scholarly journals Gadolinium-chelate functionalized magnetic CuFeSe2 ternary nanocrystals for T1-T2 dual MRI and CT imaging in vitro and in vivo

2021 ◽  
Vol 8 (4) ◽  
pp. 045001
Author(s):  
Lu-Yao Lai ◽  
Ying Jiang ◽  
Guang-Ping Su ◽  
Min Wu ◽  
Xiao-Fei Lu ◽  
...  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Ross W. Stephens ◽  
Gregory D. Tredwell ◽  
Jessica L. Bell ◽  
Karen J. Knox ◽  
Lee A. Philip ◽  
...  

Abstract Background Understanding the regional vascular delivery of particles to tumour sites is a prerequisite for developing new diagnostic and therapeutic composites for treatment of oncology patients. We describe a novel imageable 67Ga-radiolabelled polymer composite that is biocompatible in an animal tumour model and can be used for preclinical imaging investigations of the transit of different sized particles through arterial networks of normal and tumour-bearing organs. Results Radiolabelling of polymer microspheres with 67Ga was achieved using a simple mix and wash method, with tannic acid as an immobilising agent. Final in vitro binding yields after autoclaving averaged 94.7%. In vivo stability of the composite was demonstrated in New Zealand white rabbits by intravenous administration, and intrahepatic artery instillations were made in normal and VX2 tumour implanted rabbit livers. Stability of radiolabel was sufficient for rabbit lung and liver imaging over at least 3 hours and 1 hour respectively, with lung retention of radiolabel over 91%, and retention in both normal and VX2 implanted livers of over 95%. SPECT-CT imaging of anaesthetised animals and planar imaging of excised livers showed visible accumulation of radiolabel in tumours. Importantly, microsphere administration and complete liver dispersal was more easily achieved with 8 μm diameter MS than with 30 μm MS, and the smaller microspheres provided more distinct and localised tumour imaging. Conclusion This method of producing 67Ga-radiolabelled polymer microspheres is suitable for SPECT-CT imaging of the regional vascular delivery of microspheres to tumour sites in animal models. Sharper distinction of model tumours from normal liver was obtained with smaller MS, and tumour resolution may be further improved by the use of 68Ga instead of 67Ga, to enable PET imaging.


2008 ◽  
Vol 72 (4) ◽  
pp. 544-551 ◽  
Author(s):  
Joachim G. Eichhorn ◽  
Frederick R. Long ◽  
Claudia Jourdan ◽  
Johannes T. Heverhagen ◽  
Sharon L. Hill ◽  
...  

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Carmen Gil ◽  
Connor Evans ◽  
Lan Li ◽  
Merlyn Vargas ◽  
Gabriella Kabboul ◽  
...  

3D bioprinting has revolutionized personalized and precision medicine by enabling the manufacturing of tissue constructs that precisely recapitulate the cellular and functional features of native tissues. In cardiac regenerative medicine, printed scaffolds have shown tremendous potential in repairing damaged heart, however, their clinical applications have been limited by the lack of precise noninvasive tools to monitor the patch function following implantation. By integrating state-of-the-art 3D bioprinting and photon-counting computed tomography (PCCT), this study introduces a new approach for bioengineering defect-specific scaffolds and monitoring their function. We prepared distinct CT-visible bioinks containing a variety of molecular or nanoparticle (NP) contrast agents, including iodine and gadolinium molecules, Au NPs, Gd 2 O 3 NPs, and iodine-loaded liposomes ( Fig 1A-B ). In vitro release experiments showed relatively rapid diffusion-controlled depletion of molecular contrast agents from scaffolds. In contrast, NP agents showed more stable encapsulation and only a partial, degradation-mediated release for up to 3 weeks of incubation ( Fig 1C-D ). Next, PCCT imaging was performed on various scaffold geometries printed using bioinks laden with Gd 2 O 3 or Au NPs. Results demonstrated CT visibility with differential contrast between different patch regions that corresponded to the designed geometries ( Fig 1E ). Finally, we evaluated the in vivo CT imaging of bioprinted patches after their subcutaneous implantation in a mouse model. CT images demonstrated adequate signal from implanted grafts ( Fig 1F ). Together, these results establish a novel precision medicine platform for non-invasive monitoring of medical devices which can open new prospects for a broad range of tissue engineering applications. Figure 1. 3D Bioprinting of CT-visible cardiac patches. A-B: Design of bioinks functionalized with molecular (left) and nanoparticle (right) CT contrast agents ( A ) and their bioprinting ( B ). C-D: In vitro release of contrast agents from printed patches. E: CAD design (left), CT image (middle), and PCCT material decomposition (right) for multi-contrast bioprinted scaffolds. F: In vivo CT imaging of printed patch, laden with Au NPs, implanted subcutaneously into a mouse torso.


2015 ◽  
Vol 3 (19) ◽  
pp. 3948-3958 ◽  
Author(s):  
Peiyu Qiu ◽  
Rongjin Sun ◽  
Guo Gao ◽  
Ting Yin ◽  
Yulan Shen ◽  
...  

Porous upconversion nanocrystals for in vitro and in vivo CT imaging have been synthesized by an anion-induced hydrothermal method.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Matthias Nahrendorf ◽  
Edmund Keliher ◽  
Peter Panizzi ◽  
Hanwen Zhang ◽  
Sheena Hembrador ◽  
...  

Hybrid PET-CT imaging of VCAM-1 expression and vascular anatomy may facilitate simultaneous assessment of atherosclerotic lesion biology and morphology, and enhance risk assessment in individual patients. We used combined in vitro/in vivo screening of candidate affinity ligands and developed a PET reporter for imaging VCAM-1 expression with high sensitivity, specificity and translational potential. Three different phage display-derived VCAM-1 affinity peptides were tested using immobilized VCAM-1, VCAM-1 expressing cells and apoE−/− mice. A compound with a linear peptide and arborising tetrameric design showed high affinity (86.6 nM) and specificity for VCAM-1 (97% inhibition with soluble VCAM-1). This lead compound was derivatized with 18Fluorine to synthesize the clinically viable PET agent 18F-4V. In vivo PET-CT imaging showed robust uptake of 18F-4V in plaque laden arterial sections from 8 apoE−/− mice, significantly higher than in 4 wild type mice and attenuated by atorvastatin treatment (p<0.05). 18F-4V uptake was confirmed in excised aortas, colocalized with atherosclerotic plaques delineated by Oil Red O staining and correlated with mRNA levels of VCAM-1 measured by quantitative RT-PCR (R2=0.62, p=0.03). 18F-4V allows noninvasive PET-CT imaging of VCAM-1 in atheromata, has sufficient dynamic range to quantify treatment effects, and correlates with inflammatory gene expression. This approach lends itself to seamless translation to human PET-CT imaging.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Janne Koskimäki ◽  
Miikka Tarkia ◽  
Tuula Ahtola-Sätilä ◽  
Lasse Saloranta ◽  
Outi Simola ◽  
...  

Nimodipine is a widely used medication for treating delayed cerebral ischemia (DCI) after subarachnoid hemorrhage. When administrated orally or intravenously, systemic hypotension is an undesirable side effect. Intracranial subarachnoid delivery of nimodipine during aneurysm clipping may be more efficient way of preventing vasospasm and DCI due to higher concentration of nimodipine in cerebrospinal fluid (CSF). The risk of systemic hypotension may also be decreased with intracranial delivery. We used animal models to evaluate the feasibility of surgically implanting a silica-based nimodipine releasing implant into the subarachnoid space through a frontotemporal craniotomy. Concentrations of released nimodipine were measured from plasma samples and CSF samples. Implant degradation was followed using CT imaging. After completing the recovery period, full histological examination was performed on the brain and meninges. Thein vitrocharacteristics of the implant were determined. Our results show that the biodegradable silica-based implant can be used for an intracranial drug delivery system and no major histopathological foreign body reactions were observed. CT imaging is a feasible method for determining the degradation of silica implantsin vivo. The sustained release profiles of nimodipine in CSF were achieved. Compared to a traditional treatment, higher nimodipine CSF/plasma ratios can be obtained with the implant.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Shenoi ◽  
X. Zhang ◽  
J. Bischof ◽  
L. George

Over 2 million adults in the United States are affected by atrial fibrillation (AF), a common cardiac arrhythmia that is associated with decreased survival, increased cardiovascular morbidities, and a decrease in quality of life. AF can be initiated by ectopic beats originating in the myocardial sleeves surrounding the pulmonary viens. Pulmonary vein (PV) isolation via radio frequency ablation is the current gold standard for treating patients with drug-refractory AF. However, cryoablation is emerging as a new minimally-invasive technique to achieve PV isolation. Cryoablation is fast gaining acceptance due to its minimal tissue disruption, decreased thrombogenicity, and reduced complications (RF can lead to low rate of stenosis). One important question in regard to this technology is whether the PV lesion is transmural and circumferential and to what extent adjacent tissues are involved in the freezing process. As ice formation lends itself to image contrast in the body, we hypothesized that intraprocedural CT visualization of the iceball formation would allow us to predict the extent of the cryolesion and provide us with a measure of the adjacent tissue damage. Cryoablation was performed using a prototype balloon catheter cryoablation system (Boston Scientific Corporation). CT visualization of iceball formation was assessed both in vitro and in vivo. Initial in vitro studies were performed in agarose gel phantoms immersed in a 37°C water bath. Subsequently, in vivo cryoablations were performed in 5 PV ostia in 3 crossbred farm swine. The catheters were positioned in the ostia under fluoroscopic guidance. CT scans of the thoracic region were obtained every 2.5 minutes. Animals were sacrified 6 days after the procedures. Gross pathology and histology of tissues in the region of interest were evaluated. Significant metal artifacts from the catheter and edge artifacts from the tissues surrounding the cryoballoon were observed under CT imaging both in vitro and in vivo. In vitro, it was found that the size of the iceball was comparable to that observed visually during freezing of agarose gel phantoms. In vivo, contrast change consistent with iceball formation was observed during the ablation in two out of five veins. The most clearly delineated iceball also yielded the clearest morbidity. In this case, esophageal injury on the anterior side proximal to the cryoablation site was noticed during necropsy of the animal in which the iceball was visualized. Transmural and circumferential lesions were obtained in all PVs ablated. We have shown that CT can be used to visualize iceball formation in vitro and in vivo (with limitations) using our cryoablation system. While the iceball in vitro is easily visualized, iceball growth in vivo is most evident once the iceball has grown beyond the PV into the adjacent tissues. This suggests that while CT cannot easily visualize iceball growth in the PV wall itself, it may still be an important tool to guide clinicians and reduce potential morbidities in adjacent tissues. The authors acknowledge Dan Busian (Fairview University Medical Center, Minneapolis, MN) and Dr. Erik Cressman for assistance with CT imaging.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1593
Author(s):  
Min Yang ◽  
Xiaohui Wang ◽  
Fang Pu ◽  
Ying Liu ◽  
Jia Guo ◽  
...  

Exosomes, as natural nanovesicles, have become a spotlight in the field of cancer therapy due to their reduced immunogenicity and ability to overcome physiological barriers. However, the tumor targeting ability of exosomes needs to be improved before its actual application. Herein, a multiple targeted engineered exosomes nanoplatform was constructed through rare earth element Gd and Dy-doped and TAT peptide-modified carbon dots (CDs:Gd,Dy-TAT) encapsulated into RGD peptide engineered exosomes (Exo-RGD), which were used to enhance the effect of cancer imaging diagnosis and photothermal therapy. In vitro and in vivo experiments showed that the resulting CDs:Gd,Dy-TAT@Exo-RGD could effectively accumulate at cancer site with an increased concentration owing to the targeting peptides modification and exosomes encapsulation. The tumor therapy effects of mice treated with CDs:Gd,Dy-TAT@Exo-RGD were heightened compared with mice from the CDs:Gd,Dy control group. After intravenous injection of CDs:Gd,Dy-TAT@Exo-RGD into tumor-bearing mice, the temperature of tumors rose to above 50 °C under NIR irradiation and the localized hyperpyrexia induced by CDs could remarkably ablate tumors. The survival rate of the mice was 100% after 60 days. In addition, the CDs:Gd,Dy-TAT@Exo-RGD exhibited higher MRI/CT imaging contrast enhancement of tumor sites than that of CDs:Gd,Dy. Our study identified that engineered exosomes are a powerful tool for encapsulating multiple agents to enhance cancer theranostic efficiency and provide insight into precise personalized nanomedicine.


Sign in / Sign up

Export Citation Format

Share Document