Investigation and Characterization of Clay Mixture Feedstock for Extrusion-Based Additive Manufacturing

Author(s):  
Tawaddod Alkindi ◽  
Mozah Alyammahi ◽  
Rahmat Agung Susantyoko

Abstract The extrusion-based AM technique has been recently employed for rapid ceramic components fabrication due to scalability and cost-efficiency. This paper investigated aspects of the extrusion technique to print ceramic materials. Specifically, we assessed and developed a process recipe of the formulations (the composition of water and ethanol-based clay mixtures) and mixing processes. Different clay paste formulations were prepared by varying clay, water, ethanol ratios. The viscosity of clay paste was measured using a DV3T Viscometer. Afterward, the produced clay paste was used as a feedstock for WASP Delta 60100 3D printer for computer-controlled extrusion deposition. We evaluated the quality of the clay paste based on (i) pumpability, (ii) printability, and (iii) buildability. Pressure and flow rate were monitored to assess the pumpability. The nozzle was monitored for continuous material extrusion to assess printability. The maximum layer-without-collapse height was monitored to assess the buildability. This study correlated the mixture composition and process parameters, to the viscosity of the mixture, at the same printing speed. We found that 85 wt% clay, 5 wt% water, 10 wt% ethanol paste formulation, with the viscosity of 828000 cP, 202400 cP, 40400 cP at 1, 5, and 50 rpm, respectively, demonstrates good pumpability, as well as best printability and buildability.

2002 ◽  
Vol 124 (08) ◽  
pp. 50-51
Author(s):  
John DeGaspari

This article reviews that lasers are being investigated as a way to uncover tiny imperfections in crucial ceramic components of diesel engines. Heavy-duty truck engines are designed to operate for a million miles or more. In their search for components that resist corrosion and wear, manufacturers have developed engine parts from ceramics, which have found their way into a number of commercial engine applications over the last 10 years. Under some conditions, the materials hold up better than steel, but they are not immune to weaknesses of their own. The machining of ceramic parts, for example, can leave them with flaws that lead to early failure and defeat their purpose. The laser technique being developed at Argonne National Laboratory is intended to inspect the quality of ceramic parts after they are machined. So far, the laser technique has been developed to look for imperfections in silicon nitride, silicon carbide, and zirconia, among other ceramic materials.


2014 ◽  
Vol 802 ◽  
pp. 120-124 ◽  
Author(s):  
Vera Lúcia Arantes ◽  
Leonardo Grajales Agudelo ◽  
Pedro Luiz di Lorenzo

Functionally graded materials (FGM) based on stainless steel and ceramic materials have inspired researchers to combine properties and features which are not present in conventional composites, and are considered to be an alternative in the production of motors parts, cutting tools and coatings for reactors. The addition of metal and ceramic in a graded structure allows the integration of distinct properties that combine advantages of metallic and ceramic materials. Ceramic components withstand high temperatures and present high corrosion resistance, while metallic ones provide higher mechanical resistance, in particular ultimate tensile strength and fracture toughness. In this work, composites with variable levels of 316 Stainless Steel and Ytria-stabilized Zirconia, were prepared and characterized, in order to determine the thermal behavior of each composition, aiming the optimization of sintering of pieces with chemical composition gradation.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


2019 ◽  
Author(s):  
Chem Int

Liquid effluents discharged by hospitals may contain chemical and biological contaminants whose main source is the different substances used for the treatment of patients. This type of rejection can present a sanitary potentially dangerous risk for human health and can provoke a strong degradation of diverse environmental compartments mainly water and soils. The present study focuses on the quality of the liquid effluents of Hassani Abdelkader’s hospital of Sidi Bel-Abbes (West of Algeria). The results reveal a significant chemical pollution (COD: 879 mgO2/L, BOD5: 850 mgO2/L, NH4+ : 47.9 mg/l, NO2- : 4.2 mg/l, NO3- : 56.8 mg/l with respect to WHO standard of 90 mgO2/L, 30 mgO2/L, 0.5 mg/l, 1 mg/l and 1 mg/l respectively). However, these effluents are biodegradable since the ratio COD/BOD5 do not exceeded the value of 2 in almost all samples. The presence of pathogen germs is put into evidence such as pseudomonas, the clostridium, the staphylococcus, the fecal coliforms and fecal streptococcus. These results show that the direct discharge of these effluents constitutes a major threat to human health and the environment.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3832
Author(s):  
Rubén Agregán ◽  
Noemí Echegaray ◽  
María López-Pedrouso ◽  
Radwan Kharabsheh ◽  
Daniel Franco ◽  
...  

Proteomics is a new area of study that in recent decades has provided great advances in the field of medicine. However, its enormous potential for the study of proteomes makes it also applicable to other areas of science. Milk is a highly heterogeneous and complex fluid, where there are numerous genetic variants and isoforms with post-translational modifications (PTMs). Due to the vast number of proteins and peptides existing in its matrix, proteomics is presented as a powerful tool for the characterization of milk samples and their products. The technology developed to date for the separation and characterization of the milk proteome, such as two-dimensional gel electrophoresis (2DE) technology and especially mass spectrometry (MS) have allowed an exhaustive characterization of the proteins and peptides present in milk and dairy products with enormous applications in the industry for the control of fundamental parameters, such as microbiological safety, the guarantee of authenticity, or the control of the transformations carried out, aimed to increase the quality of the final product.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 544
Author(s):  
Giuditta Guerrini ◽  
Antonio Vivi ◽  
Sabrina Gioria ◽  
Jessica Ponti ◽  
Davide Magrì ◽  
...  

Adjuvants have been used for decades to enhance the immune response to vaccines, in particular for the subunit-based adjuvants. Physicochemical properties of the adjuvant-protein antigen complexes, such as size, morphology, protein structure and binding, influence the overall efficacy and safety of the vaccine. Here we show how to perform an accurate physicochemical characterization of the nanoaluminum–ovalbumin complex. Using a combination of existing techniques, we developed a multi-staged characterization strategy based on measurements of increased complexity. This characterization cascade has the advantage of being very flexible and easily adaptable to any adjuvant-protein antigen combinations. It will contribute to control the quality of antigen–adjuvant complexes and immunological outcomes, ultimately leading to improved vaccines.


Author(s):  
Piero Sciavilla ◽  
Francesco Strati ◽  
Monica Di Paola ◽  
Monica Modesto ◽  
Francesco Vitali ◽  
...  

Abstract Studies so far conducted on irritable bowel syndrome (IBS) have been focused mainly on the role of gut bacterial dysbiosis in modulating the intestinal permeability, inflammation, and motility, with consequences on the quality of life. Limited evidences showed a potential involvement of gut fungal communities. Here, the gut bacterial and fungal microbiota of a cohort of IBS patients have been characterized and compared with that of healthy subjects (HS). The IBS microbial community structure differed significantly compared to HS. In particular, we observed an enrichment of bacterial taxa involved in gut inflammation, such as Enterobacteriaceae, Streptococcus, Fusobacteria, Gemella, and Rothia, as well as depletion of health-promoting bacterial genera, such as Roseburia and Faecalibacterium. Gut microbial profiles in IBS patients differed also in accordance with constipation. Sequence analysis of the gut mycobiota showed enrichment of Saccharomycetes in IBS. Culturomics analysis of fungal isolates from feces showed enrichment of Candida spp. displaying from IBS a clonal expansion and a distinct genotypic profiles and different phenotypical features when compared to HS of Candida albicans isolates. Alongside the well-characterized gut bacterial dysbiosis in IBS, this study shed light on a yet poorly explored fungal component of the intestinal ecosystem, the gut mycobiota. Our results showed a differential fungal community in IBS compared to HS, suggesting potential for new insights on the involvement of the gut mycobiota in IBS. Key points • Comparison of gut microbiota and mycobiota between IBS and healthy subjects • Investigation of cultivable fungi in IBS and healthy subjects • Candida albicans isolates result more virulent in IBS subjects compared to healthy subjects


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
José Luis P. Calle ◽  
Marta Ferreiro-González ◽  
Ana Ruiz-Rodríguez ◽  
Gerardo F. Barbero ◽  
José Á. Álvarez ◽  
...  

Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin (PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements as established by its PDO, which, in this case, means that it has been produced following the traditional solera and criadera ageing system. The quality of the vinegar is determined by many factors such as the raw material, the acetification process or the aging system. For this reason, mainly producers, but also consumers, would benefit from the employment of effective analytical tools that allow precisely determining the origin and quality of vinegar. In the present study, a total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR) spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other nonparametric supervised techniques, namely, support vector machine (SVM) and random forest (RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend of the vinegar samples according to their raw materials. SVM in combination with leave-one-out cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine used for their production. The RF method allowed selecting the most important variables to develop the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine. Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.


Sign in / Sign up

Export Citation Format

Share Document