scholarly journals Interpretation of the apparent activation energy of glass transition

2021 ◽  
Vol 5 (9) ◽  
pp. 095013
Author(s):  
Koun Shirai
1994 ◽  
Vol 9 (11) ◽  
pp. 2884-2890
Author(s):  
Un-Sig Min ◽  
James C.M. Li

Incramute Cu-Mn alloys were dealloyed to remove Mn by selective electrolytic separation. The porous dealloyed specimens were compressed at 0.17-14 GPa, resulting in densities of 55-88% of the density of pure copper. Some porous copper specimens before compression were soaked in a mixture of monomer (MMA) and the initiator (AIBN), compressed, and then polymerized by heating. Young's moduli of both the dealloyed porous copper and its PMMA composite were found to decrease exponentially with porosity and volume fraction of PMMA, respectively. The apparent activation energy for damping of Cu-PMMA composite near the glass transition temperature of PMMA was found to increase with decreasing volume fraction of PMMA.


2010 ◽  
Vol 64 (4) ◽  
pp. 275-281
Author(s):  
Dejan Milicevic ◽  
Sasa Trifunovic ◽  
Tihana Mudrinic ◽  
Andreja Leskovac ◽  
Nenad Ignjatovic ◽  
...  

The influence of gamma radiation on the structure and glass transition behavior of poly-L-lactide (PLLA) has been studied. Since PLLA exposed to high-energy radiation in the presence of air is prone to chain scission reactions and large degradation, changes in molecular weight were obtained by the gel permeation chromatography (GPC). Alterations in the glass transition behaviour were investigated by differential scanning calorimetry (DSC). The apparent activation energy, ?H*, for the glass transition was determined on the basis of the heating rate dependence of the glass transition temperature, Tg. Our findings support the fact that chain scission is the main reason for the decrease of Tg and ?H* with the absorbed dose. At low doses, despite large changes in molecular weight, only small alterations are observed in the glass transition temperature and apparent activation energy. Further increase in the absorbed dose introduces not only significant changes in the molecular weight but also in the glass transition temperature and the activation energy. Such glass transition behaviour is a manifestation of a well-known effect of molecular weight on Tg, postulated by the Fox-Flory equation. However, all the observed alterations are small and tolerable at absorbed doses required for sterilization (up to 25 kGy in most circumstances). Furthermore, this study reveals that the radiation-induced changes in the molecular weight and the glass transition temperature occur in a predictable and fairly accurate manner. Therefore, gamma radiation can be used not only for sterilization but also for tailoring desirable end-use properties of PLLA based implants.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Guanghao Cheng ◽  
Gurong Shen ◽  
Jun Wang ◽  
Yunhao Wang ◽  
Weibo Zhang ◽  
...  

The present work reports the effects of γ-, θ-phase of alumina on the hydrothermal stability and the properties of non- and strongly-interacting Rh species of the Rh/Al2O3 catalysts. Comparing to γ-Al2O3, θ-Al2O3 can not only reduce the amount of occluded Rh but also better stabilize Rh during hydrothermal aging treatment. When the aging time was prolonged to 70 h, all the non-interacting Rh was transformed into strongly-interacting Rh and occluded Rh. The XPS results indicated that non- and strongly-interacting Rh might exist in the form of Rh/Rh3+ and Rh4+, respectively. CO-NO reaction was chosen as a probe reaction to research more information about non- and strongly-interacting Rh. The two Rh species had similar apparent activation energy (Eapp) of 170 kJ/mol, which indicated that non- and strongly-interacting Rh follow the same reaction path. The non-interacting Rh was removed from aged samples by the acid-treated method, and obtained results showed that only 2.5% and 4.0% non-interacting Rh was maintained in aged Rh/γ-Al2O3 and Rh/θ-Al2O3.


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


2021 ◽  
Vol 10 (1) ◽  
pp. 011-020
Author(s):  
Luyao Kou ◽  
Junjing Tang ◽  
Tu Hu ◽  
Baocheng Zhou ◽  
Li Yang

Abstract Generally, adding a certain amount of an additive to pulverized coal can promote its combustion performance. In this paper, the effect of CaO on the combustion characteristics and kinetic behavior of semi-coke was studied by thermogravimetric (TG) analysis. The results show that adding proper amount of CaO can reduce the ignition temperature of semi-coke and increase the combustion rate of semi-coke; with the increase in CaO content, the combustion rate of semi-coke increases first and then decreases, and the results of TG analysis showed that optimal addition amount of CaO is 2 wt%. The apparent activation energy of CaO with different addition amounts of CaO was calculated by Coats–Redfern integration method. The apparent activation energy of semi-coke in the combustion reaction increases first and then decreases with the increase in CaO addition. The apparent activation energies of different samples at different conversion rates were calculated by Flynn–Wall–Ozawa integral method. It was found that the apparent activation energies of semi-coke during combustion reaction decreased with the increase in conversion.


2007 ◽  
Vol 28 (1) ◽  
pp. 12-18 ◽  
Author(s):  
I. A. Buyanovskii ◽  
Yu. N. Drozdov ◽  
Z. V. Ignatieva ◽  
T. M. Savinova ◽  
V. A. Levchenko ◽  
...  

2007 ◽  
Vol 21 (01) ◽  
pp. 127-132
Author(s):  
T. R. YANG ◽  
G. ILONCA ◽  
V. TOMA ◽  
P. BALINT ◽  
M. BODEA

The scaling behavior of the effective activation energy of high-quality epitaxial c-oriented Bi 2 Sr 2 Ca ( Cu 1-x Co x)2 O d thin films with 0≤x ≤0.025 has been studied as a function of temperature and magnetic field. For all samples, the effective activation energy scales as U(T, μoH)=Uo(1-T/T c )mHn with exponent m=1.25±0.03, n=-1/2 and the field scaling 1/μoH and -UμoH for thick films and ultra thin films, respectively. The results are discussed taking into account of the influence of the Co substitution with a model in which U(T, H) arises from plastic deformations of the viscous flux liquid above the vortex-glass transition temperature.


Sign in / Sign up

Export Citation Format

Share Document