scholarly journals Dopant activity for highly in-situ doped polycrystalline silicon: Hall, XRD, Scanning Capacitance Microscopy (SCM) and Scanning Spreading Resistance Microscopy (SSRM)

Nano Express ◽  
2021 ◽  
Author(s):  
Rosine Coq Germanicus ◽  
Florent Lallemand ◽  
Daniel Chateigner ◽  
Wadia Jouha ◽  
Niemat Moultif ◽  
...  
Author(s):  
J.S. McMurray ◽  
C.M. Molella

Abstract Root cause for failure of 90 nm body contacted nFETs was identified using scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM). The failure mechanism was identified using both cross sectional imaging and imaging of the active silicon - buried oxide (BOX) interface in plan view. This is the first report of back-side plan view SCM and SSRM data for SOI devices. This unique plan view shows the root cause for the failure is an under doped link up region between the body contacts and the active channel of the device.


1995 ◽  
Vol 403 ◽  
Author(s):  
T. Akasaka ◽  
D. He ◽  
I. Shimizu

AbstractHigh quality polycrystalline silicon was made on glass from fluorinated precursors by two step growth, i.e., (1) formation of seed crystals on glass by layer-by-layer(LL) technique and (2) grain-growth on the seeds. In LL technique, deposition of ultra-thin films and treatment with atomic hydrogen was repeated alternately. Columnar grains with 200 nm dia were grown epitaxy-like on the seeds by optimizing the deposition parameters under in situ observation with spectroscopic ellipsometry.


2002 ◽  
Vol 729 ◽  
Author(s):  
Roger T. Howe ◽  
Tsu-Jae King

AbstractThis paper describes recent research on LPCVD processes for the fabrication of high-quality micro-mechanical structures on foundry CMOS wafers. In order to avoid damaging CMOS electronics with either aluminum or copper metallization, the MEMS process temperatures should be limited to a maximum of 450°C. This constraint rules out the conventional polycrystalline silicon (poly-Si) as a candidate structural material for post-CMOS integrated MEMS. Polycrystalline silicon-germanium (poly-SiGe) alloys are attractive for modular integration of MEMS with electronics, because they can be deposited at much lower temperatures than poly-Si films, yet have excellent mechanical properties. In particular, in-situ doped p-type poly-SiGe films deposit rapidly at low temperatures and have adequate conductivity without post-deposition annealing. Poly-Ge can be etched very selectively to Si, SiGe, SiO2 and Si3N4 in a heated hydrogen peroxide solution, and can therefore be used as a sacrificial material to eliminate the need to protect the CMOS electronics during the MEMS-release etch. Low-resistance contact between a structural poly-SiGe layer and an underlying CMOS metal interconnect can be accomplished by deposition of the SiGe onto a typical barrier metal exposed in contact windows. We conclude with directions for further research to develop poly-SiGe technology for integrated inertial, optical, and RF MEMS applications.


2013 ◽  
Vol 210 (12) ◽  
pp. 2729-2735 ◽  
Author(s):  
Ingmar Höger ◽  
Thomas Schmidt ◽  
Anja Landgraf ◽  
Martin Schade ◽  
Annett Gawlik ◽  
...  

2008 ◽  
Vol 1066 ◽  
Author(s):  
Ram Kishore ◽  
Renu Sharma ◽  
Satoshi Hata ◽  
Noriyuki Kuwano ◽  
Yoshitsuga Tomokiyo ◽  
...  

ABSTRACTThe interaction of amorphous silicon and aluminum films to achieve polycrystalline silicon has been investigated using transmission electron microscope equipped with in-situ heating holder. Carbon coated nickel grids were used for TEM studies. An ultra high vacuum cluster tool was used for the deposition of a ∼50nm a-Si films and a vacuum deposition system was used to deposit a ∼50nm Al films on a-Si film. The microstructural features and electron diffraction in the plain view mode were observed with increase in temperature starting from room temperature to 275 °C. The specimen was loaded inside TEM heating holder. The temperature was measured and kept constant for 5 minutes during which the microstructure at fixed magnification of X63K was recorded and the electron diffraction pattern of the same area was also recorded. The temperature was then increase and fixed at desired value and microstructure and EDP were again recorded. The temperatures used in this experiment were 30, 100, 150, 200, 225, 275°C. A sequential change in microstructural features and electron diffraction pattern due to interfacial diffusion of boundary between Al and amorphous Si was investigated. Evolution of polycrystalline silicon with randomly oriented grains as a result of a-Si and Al interaction was revealed. After the in-situ heating experiment the specimen was subjected to high resolution TEM and EDS investigations after removing the excess Al. The EDS analysis of the crystallized specimen was performed to locate the Al distribution in the crystallized silicon. These studies show that the Al induced crystallization process can be used to prepare polycrystalline as well as nanocrystalline silicon by controlling the in-situ annealing parameters. The investigations are very useful as the nanocrystalline silicon is being investigated for its use in developing high efficiency silicon solar structures.


1994 ◽  
Vol 343 ◽  
Author(s):  
M. Le Berre ◽  
M. Lemiti ◽  
D. Barbier ◽  
P. Pinard ◽  
J. Cali ◽  
...  

ABSTRACTThe electrical and piezoresistive properties of in-situ doped PECVD silicon films deposited on oxided silicon wafers have been investigated. One series of films was deposited in the so-called microcrystalline state at 450°C. The other set of samples was deposited in the amorphous state at 320°C and subjected to rapid thermal annealing. Structural properties (grain size, texture, residual stress) were evaluated experimentally through TEM and grazing angle X ray diffraction and related to the measured gauge factor. A maximum longitudinal gauge factor of 28 is measured in the case of advantageously textured microcrystalline material, the magnitude of the gauge factor decreasing sharply for randomly oriented material. For the amorphous deposited and subsequently annealed material, the longitudinal gauge factor is in the range 22–27 depending on dopant concentration. These experimental features are compared to the results of a theoretical approach of piezoresistance in polysilicon. We derive various expressions of the gauge factor according to the assumptions of either constant stress or constant strain within the aggregate. In the case of untextured films, analytical Voigt-Reuss-Hill averages for the elements of piezoresistive and elastoresistive tensors lead to greatly simplified expressions. Theoretical estimates are shown to be in reasonable agreement with the experimental measurements. This confirms the great potential of PECVD microcrystalline and polycrystalline silicon for strain gauges.


Sign in / Sign up

Export Citation Format

Share Document