scholarly journals Effect of point defects and nanopores on the fracture behaviors in single-layer MoS2 nanosheets

Nano Express ◽  
2021 ◽  
Author(s):  
Hongwei Bao ◽  
yaping miao ◽  
Fei Ma

Abstract Point defects and nanopores are inevitable and particularly noticeable in single-layer (SL) MoS2. Molecular dynamics (MD) simulations have been done to comprehensively study the influences of point defects and nanopores on tensile deformation behaviors of SLMoS2 nanosheets, and the dependences of fracture properties on defect type and concentration, pore size, temperature and strain rate are discussed. The formation energy of S vacancy (VS) is the lowest one, but that of VMoS6 is the highest one, corresponding to the highest and lowest fracture stress, respectively. The local stress concentration around point defects and nanopores might lead to the early bond breaking and subsequent nucleation of cracks and brittle fracture upon tensile loading. A modified Griffith criterion is proposed to describe the defect concentration and pore size dependent fracture stress and strain. These findings provide us an important guideline for the structural design of 2D materials in future applications.

2013 ◽  
Vol 592-593 ◽  
pp. 61-66
Author(s):  
Maxime Sauzay ◽  
Mohamed Ould Moussa

Slip localization is widely observed in metallic polycrystals after tensile deformation, cyclic deformation or pre-irradiation followed by tensile deformation. Such strong deformation localized in thin slip bands induces local stress concentrations in the quasi-elastic matrix around, at the intersections between slip bands (SBs) and grain boundaries (GBs) where microcrack initiation is often observed. Since the work of Stroh, such stress fields have been mostly modeled using the dislocation pile-up theory which leads to stress singularities similar to the LEFM ones. The Griffith criterion has then been widely applied, leading usually to strong underestimations of the macroscopic stress to GB crack initiation. In fact, slip band thickness is finite: 20nm-1000nm depending on material, temperature and loading conditions. Then, many slip planes are plastically activated through the thickness, and not only one single atomic plane. To evaluate more realistic stress fields, numerous crystalline finite element (FE) computations have been carried out using microstructure inputs (slip band aspect ratio, crystal and GB orientation...). A strong influence of slip band thickness close to the slip band corner has been highlighted, which is not accounted for by the pile-up theory. But far away, the thickness has a negligible effect and the predicted stress fields are close to the one predicted by the pile-up theory. Closed-form expressions are deduced from the numerous FE computation results allowing a straightforward prediction of GB stress fields. Slip band plasticity parameters, such as length and thickness, as well as crystal orientation, GB plane and remote stress are taken into account. The dependence with respect to the various parameters can be understood in the framework of matching expansions usually applied to cracks with V notches of finite thickness. As the exponent of the GB stress close-field is only about one-half of the pile-up or LEFM crack one, the Griffith criterion may not be used for GB microcrack prediction in case of finite thickness. That is why finite crack fracture mechanics is used together with both energy and stress criteria. Taking into account SB finite thickness, t>0, leads to predicted remote stresses to GB microcrack initiation three to six times lower than the ones predicted using the to pile-up theory, in agreement with experimental data.


2018 ◽  
Author(s):  
Fanchao Meng ◽  
Ming Ni ◽  
Feng Chen ◽  
Jun Song ◽  
Dong Wei

ABSTRACTA new carbon allotrope, namely popgraphene, has been recently demonstrated to possess high potentials for nanodevice applications. Here, the fracture of defective popgraphene was studied using molecular dynamics simulations and continuum modeling. Three scenarios of defects were considered, including an individual point defect, distributed point defects, and nanocracks. It was found that the fracture stress of popgraphene with an individual point defect was governed by both the geometry of the defect and the critical bond where fracture initiates. Moreover, the fracture stress of popgraphene with distributed point defects was discovered to be inversely proportional to the defect density, showing a nice linear trend. Furthermore, for popgraphene with a nanocrack, it failed in a brittle fashion and exhibited a negligible lattice trapping effect. Griffith criterion was subsequently employed with the consideration of crack deflection to accurately predict the dependence of fracture stress on crack size. The present study lays a mechanistic foundation for nanoscale applications of popgraphene and offers a better understanding of the roles of defects in fracture of low-dimensional materials.


Author(s):  
Lawrence W. Ortiz ◽  
Bonnie L. Isom

A procedure is described for the quantitative transfer of fibers and particulates collected on membrane filters to electron microscope (EM) grids. Various Millipore MF filters (Millipore AA, HA, GS, and VM; 0.8, 0.45, 0.22 and 0.05 μm mean pore size) have been used with success. Observed particle losses have not been size dependent and have not exceeded 10%. With fibers (glass or asbestos) as the collected media this observed loss is approximately 3%.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
YongChao Wang ◽  
YinBo Zhu ◽  
HengAn Wu

The porous characteristics of disordered carbons are critical factors to their performance on hydrogen storage and electrochemical capacitors. Even though the porous information can be estimated indirectly by gas adsorption experiments, it is still hard to directly characterize the porous morphology considering the complex 3D connectivity. To this end, we construct full-atom disordered graphene networks (DGNs) by mimicking the chlorination process of carbide-derived carbons using annealing-MD simulations, which could model the structure of disordered carbons at the atomic scale. The porous characteristics, including pore volume, pore size distribution (PSD), and specific surface area (SSA), were then computed from the coordinates of carbon atoms. From the evolution of structural features, pores grow dramatically during the formation of polyaromatic fragments and sequent disordered framework. Then structure is further graphitized while the PSD shows little change. For the obtained DGNs, the porosity, pore size, and SSA increase with decreasing density. Furthermore, SSA tends to saturate in the low-density range. The DGNs annealed at low temperatures exhibit larger SSA than high-temperature DGNs because of the abundant free edges.


2011 ◽  
Vol 1363 ◽  
Author(s):  
G.J. Ackland ◽  
T.P.C. Klaver ◽  
D.J. Hepburn

ABSTRACTFirst principles calculations have given a new insight into the energies of point defects in many different materials, information which cannot be readily obtained from experiment. Most such calculations are done at zero Kelvin, with the assumption that finite temperature effects on defect energies and barriers are small. In some materials, however, the stable crystal structure of interest is mechanically unstable at 0K. In such cases, alternate approaches are needed. Here we present results of first principles calculations of austenitic iron using the VASP code. We determine an appropriate reference state for collinear magnetism to be the antiferromagnetic (001) double-layer (AFM-d) which is both stable and lower in energy than other possible models for the low temperature limit of paramagnetic fcc iron. Another plausible reference state is the antiferromagnetic (001) single layer (AFM-1). We then consider the energetics of dissolving typical alloying impurities (Ni, Cr) in the materials, and their interaction with point defects typical of the irradiated environment. We show that the calculated defect formation energies have fairly high dependence on the reference state chosen: in some cases this is due to instability of the reference state, a problem which does not seem to apply to AFM-d and AFM-1. Furthermore, there is a correlation between local free volume magnetism and energetics. Despite this, a general picture emerge that point defects in austenitic iron have geometries similar to those in simpler, non-magnetic, thermodynamically stable FCC metals. The defect energies are similar to those in BCC iron. The effect of substitutional Ni and Cr on defect properties is weak, rarely more than tenths of eV, so it is unlikely that small amounts of Ni and Cr will have a significant effect on the radiation damage in austenitic iron at high temperatures.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
R. Angelova

AbstractThe paper presents an experimental procedure developed for determination of the pore size, shape and distribution in a single layer woven fabric, for the construction of a virtual model to be incorporated in a future CFD software package. The procedure is based on non-destructive observation and analysis of woven samples. 14 different samples of gray fabrics of 100 % cotton in plain and twill weaves are investigated. The results obtained allow the creation of reality more realistic virtual model of the woven structure, and theoretical investigation of its porosity and permeability through computer simulation.


2021 ◽  
Vol 3 (4) ◽  
pp. 045042
Author(s):  
S Gowthaman ◽  
T Jagadeesha

Abstract High entropy alloy has offered significant attention in various material science applications, due to its excellent material features. In this investigation, the mechanical characteristics of Ni2FeCrCuAl High Entropy Alloy (HEA) have been examined under variable temperature and strain rates to analyze its influence over the material features of high entropy alloy through Molecular Dynamics (MD) simulation and it is stated that the formation of various point defects and dislocations are the major cause for the augmentation of tensile deformation which impacts the tensile behavior of high entropy alloy. Moreover, the Radial Distribution Function (RDF) has been examined throughout tensile deformation, to investigate the impact of applied stress over the de-bonding of various atoms and it is found that the strain rate has a greater beneficial impact over the material feature trailed by the temperature outcome, owed to its superior impact on the formation of point defects and shear strain during tensile characterization.


1998 ◽  
Vol 540 ◽  
Author(s):  
J.M. Perlado ◽  
L. Malerba ◽  
T. Diaz De La Rubia

AbstractMolecular Dynamics (MD) simulations of neutron damage in β-SiC have been performed using a modified version of the Tersoff potential. The Threshold Displacement Energy (TDE) for Si and C atoms at 300 K has been determined along directions [001], [110], [111] and [ 1 1 1 ]. The existence of recombination barriers, which allow the formation of metastable, temperature-sensitive defects even below the threshold, has been observed. Displacement cascades produced by both C- and Si-recoils of energies spanning from 0.5 keV up to, respectively, 5 keV and 8 keV have also been simulated at 300 K and 1300 K. Their analysis, together with the analysis of damage accumulation (∼3.4×10-3 DPA) at 1300 K, reveals that the two sub-lattices exhibit opposite responses to irradiation: whereas only a little damage is produced on the “ductile” Si sub-lattice, many point-defects accumulate on the much more “fragile” C sub-lattice. A preliminary study of the nature and clustering tendency of these defects is performed. The possibility of disorder-induced amorphization is considered and the preliminary result is that no amorphization takes place at the dose and temperature simulated.


RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 111787-111796 ◽  
Author(s):  
Shang Liu ◽  
Guixiang Ma ◽  
Shaolei Xie ◽  
Yongzhong Jia ◽  
Jinhe Sun ◽  
...  

Phase transition regulation was achieved by imbibing adipic acid into mesoporous silica chambers, on the basis of pore size-dependent thermal behaviour.


Sign in / Sign up

Export Citation Format

Share Document