Pasteurized Donor Human Milk Should Not Replace Mother's Own Milk in Preterm Neonates: A Quality Initiative Toward Decreasing the “PDHM Dependency”

2021 ◽  
Author(s):  
Nitasha Bagga ◽  
Simi Kurian ◽  
Ashik Mohamed ◽  
Pradeep Reddy ◽  
Dinesh Kumar Chirla
Author(s):  
Gregory J. Walker ◽  
Vanessa Clifford ◽  
Nidhi Bansal ◽  
Alberto Ospina Stella ◽  
Stuart Turville ◽  
...  

ABSTRACTAs the COVID-19 pandemic evolves, human milk banks worldwide continue to provide donor human milk to vulnerable infants who lack access to mother’s own milk. Under these circumstances, ensuring the safety of donor human milk is paramount, as the risk of vertical transmission of SARS-CoV-2 is not well understood. Here, we investigate the inactivation of SARS-CoV-2 in human milk by pasteurisation, and the stability of SARS-CoV-2 in human milk under cold storage (freezing or refrigeration). Following heating to 63°C or 56°C for 30 minutes, SARS-CoV-2 replication competent (i.e. live) virus was undetected in both human milk and the control medium. Cold storage of SARS-CoV-2 in human milk (either at 4°C or - 30°C) did not significantly impact infectious viral load over a 48 hour period. Our findings demonstrate that SARS-CoV-2 can be effectively inactivated by Holder pasteurisation, and confirm that existing milk bank processes will effectively mitigate the risk of transmission of SARS-COV-2 to vulnerable infants through pasteurised donor human milk.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
D. Mallardi ◽  
C. Tabasso ◽  
P. Piemontese ◽  
S. Morandi ◽  
T. Silvetti ◽  
...  

Abstract Background Human milk is a vehicle for bioactive compounds and beneficial bacteria which promote the establishment of a healthy gut microbiome of newborns, especially of preterm infants. Pasteurized donor human milk (PDHM) is the second-best option when preterm mother’s own milk is unavailable. Since pasteurization affect the microbiological quality of donor milk, PDHM was inoculated with different preterm milk samples and then incubated, in order to evaluate the effect in terms of bacterial growth, human milk microbiome and proteolytic phenomena. Methods In an in-vitro study PDHM was inoculated at 10% v/v using ten preterm milk samples. Microbiological, metataxonomic and peptidomic analyses, on preterm milk samples at the baseline (T0), on PDHM and on inoculated milk (IM) samples at T0, after 2 h (T1) and 4 h (T2) of incubation at 37 °C, were conducted. Results IM samples at T2 showed a Total Bacterial Count not significantly different (p > 0.01) compared to preterm milk samples. At T2 lactic acid bacteria level was restored in all IM. After inoculation, metataxonomic analysis in IM samples showed that Proteobacteria remained the predominant phylum while Firmicutes moved from 3% at T1 to 9.4% at T2. Peptidomic profile of IM resembled that of PDHM, incubated for the same time, in terms of number and type of peptides. Conclusion The study demonstrated that inoculation of PDHM with mother’s own milk could restore bacterial growth and personalize human milk microbiome in PDHM. This effect could be beneficial because of the presence of maternal probiotic bacteria which make PDHM more similar to mother’s own milk.


2020 ◽  
Vol 36 (2) ◽  
pp. 245-253
Author(s):  
Bibiana Chinea Jiménez ◽  
Marta Cabrera Lafuente ◽  
María L. Couce ◽  
Rosario Madero ◽  
Maximo Vento ◽  
...  

Background Data are limited on the association between the use of donor human milk and improvements in feeding tolerance. Objective To determine the influence of the duration of parenteral nutrition on the growth and morbidity of the breastfed newborn when using donated human milk in the absence of mother’s own milk. Methods We conducted a retrospective study before and after the intervention that compared two groups of newborns ( N = 284; each group n = 142). We used a convenience sample of all newborns ≤32 weeks gestation consecutively admitted in a single unit before (Group 1 between December 2012 and May 2014) or after (Group 2 between October 2014 and December 2016) the availability of donor human milk. In Group 2, donor human milk was administered at least 3 to 4 weeks or until the baby weighed 1,500 g. Weight was recorded daily and length and head circumference weekly. Parenteral nutrition was continued until enteral feeding volume reached 120 ml/kg/day. Additional variables measured were the number of days with a central venous catheter, age that the enteral feeding volume reached 150 ml/kg/day, and duration of stay. Results The duration of parenteral feeding was the same before and after: 12 (8.23) and 11 (7.19) days ( p = .822). The z scores for weight and height of newborns was lower in Group 2 = −1.8 (1.0) and −2.3 (1.1) and Group 1 = −1.2 (1.1) ( p < .001) and −1.8 (1.4) ( p = .005). Conclusion We did not find an association between the administration of donor human milk as a supplement to mother’s own milk and reduced number of days of parenteral nutrition. Back translation by Laurence Grummer-Strawn


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5783
Author(s):  
Monica F. Torrez Lamberti ◽  
Evon DeBose-Scarlett ◽  
Timothy Garret ◽  
Leslie Ann Parker ◽  
Josef Neu ◽  
...  

Human milk could be considered an active and complex mixture of beneficial bacteria and bioactive compounds. Since pasteurization drastically reduces the microbial content, we recently demonstrated that pasteurized donor human milk (DHM) could be inoculated with different percentages (10% and 30%) of mother’s own milk (MOM) to restore the unique live microbiota, resulting in personalized milk (RM10 and RM30, respectively). Pasteurization affects not only the survival of the microbiota but also the concentration of proteins and metabolites, in this study, we performed a comparative metabolomic analysis of the RM10, RM30, MOM and DHM samples to evaluate the impact of microbial restoration on metabolite profiles, where metabolite profiles clustered into four well-defined groups. Comparative analyses of DHM and MOM metabolomes determined that over one thousand features were significantly different. In addition, significant changes in the metabolite concentrations were observed in MOM and RM30 samples after four hours of incubation, while the concentration of metabolites in DHM remained constant, indicating that these changes are related to the microbial expansion. In summary, our analyses indicate that the metabolite profiles of DHM are significantly different from that of MOM, and the profile of MOM may be partially restored in DHM through microbial expansion.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1300
Author(s):  
Félix Castillo ◽  
Félix-Joel Castillo-Ferrer ◽  
Begoña Cordobilla ◽  
Joan Carles Domingo

A cross-sectional single-center study was designed to compare the fatty acids profile, particularly docosahexaenoic acid (DHA) levels, between milk banking samples of donor human milk and mother’s own milk (MOM) for feeding preterm infants born before 32 weeks’ gestation. MOM samples from 118 mothers included colostrum (1–7 days after delivery), transitional milk (9–14 days), and mature milk (15–28 days and ≥29 days). In the n-3 polyunsaturated fatty acids (PUFAs) group, the levels of α-linolenic acid (C18:3 n3) and DHA (C22:6 n3) showed opposite trends, whereas α-linolenic acid was higher in donor human milk as compared with MOM, with increasing levels as stages of lactation progressed, DHA levels were significantly lower in donor human milk than in MOM samples, which, in turn, showed decreasing levels along stages of lactation. DHA levels in donor human milk were 53% lower than in colostrum. Therefore, in preterm infants born before 32 weeks’ gestation, the use of pasteurized donor human milk as exclusive feeding or combined with breastfeeding provides an inadequate supply of DHA. Nursing mothers should increase DHA intake through fish consumption or nutritional supplements with high-dose DHA while breastfeeding. Milk banking fortified with DHA would guarantee adequate DHA levels in donor human milk.


2021 ◽  
Author(s):  
Domenica Mallardi ◽  
Chiara Tabasso ◽  
Pasqua Piemontese ◽  
Stefano Morandi ◽  
Tiziana Silvetti ◽  
...  

Abstract Background Human milk is a vehicle of bioactive compounds and beneficial bacteria which promote the establishment of a healthy gut microbiome of newborns, especially of preterm infants. Pasteurized donor human milk (PDHM) is the second-best option when preterm mother’s own milk is unavailable. Since pasteurization affect the quality of donor milk, the effect on bacterial growth, human milk microbiota diversity and proteolytic phenomena in PDHM inoculated with different preterm milk samples, was evaluated. Methods Ten preterm milk samples was used to perform inoculation of PDHM at 10% v/v. Microbiological, metataxonomic and peptidomic analysis, on preterm milk samples at the baseline (T0) and PDHM and inoculated milk (IM) samples at T0, after 2h (T1) and 4h (T2) of incubation at 37°C, were conducted. Results IM samples at T2 showed a Total Bacterial Count not significantly different (p > 0.01) compared to preterm milk samples. Lactic acid bacteria (LAB) level was restored in all IM at T2. After inoculation, metataxonomic analysis showed that Proteobacteria remained the predominant phylum while Firmicutes moved from 3% at T1 to 9.4% at T2 in IM samples. Peptidomic profile of IM resembled that of PDHM incubated for the same time in terms of number and type of peptides. Conclusion The study demonstrated that inoculation with fresh mother’s own milk could restore bacterial growth and personalize human milk microbiome in PDHM. This effect could be beneficial thanks to the presence of maternal probiotic bacteria which make PDHM more similar to mother’s own milk.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Miriam Aguilar-Lopez ◽  
Chris Wetzel ◽  
Alissa MacDonald ◽  
Carey Gaede ◽  
Vitaliy Soloveychik ◽  
...  

Abstract Objectives Preterm infants (PTI) are at risk for many complications including growth retardation, and co-morbidities, such as necrotizing enterocolitis. Microbiome composition is influenced by diet and other environmental factors or medical treatments. The use of mother's own milk (MOM) or donor human milk (DHM) is recommended over preterm formula (PF). However, when there is insufficient human milk (HM), PF is used. The objective of this study was to evaluate how each type of feed (MOM, DHM and PF) affects PTI gut microbiota composition during the infant's Neonatal Intensive Care Unit (NICU) stay. Methods This cohort study followed PTI from birth until discharge from the NICU. Medical records, weekly weight and daily feed volume were recorded. Stool samples (n = 551) were collected from the infant's diaper. Total DNA was extracted to assess microbiome composition, V3-V4 regions of 16S rRNA gene were amplified and sequenced using Illumina HiSeq and data were analyzed in Qiime2. Results PTI (n = 97; 63% female) were enrolled with mean gestational age (GA) of 29 ± 2.45 weeks, birth weight of 1.27 ± 0.43 kg, and 78% delivered by C-section. Infants were discharged at 37 ± 2.06 weeks corrected GA (cGA) weighing 2.69 ± 0.57 kg. At birth, PTI from black mothers (27%) had higher (P < 0.05) microbiota diversity (observed OTUs) than other ethnicities. No differences in microbiota were found for sex or mode of delivery in the first 14d postpartum. PF was not fed prior to 34 weeks cGA. Over time, microbiota beta diversity differentiated by cGA and type of feeding. In HM-fed PTI, when > 50% MOM was consumed, the abundance of Clostridium, Enterococcus, and Staphylococcus was higher (P < 0.05) than DHM. When > 50% DHM was fed, Bifidobacteium, Paeniclostridium, Staphylococcus and Veillonela increased (P < 0.05) compared to > 50% MOM. In PTI fed both HM and PF, in those consuming > 33% PF, the abundance of Clostridium difficile was higher and Staphylococcuslower than either MOM or DHM (P < 0.05). Conclusions The development of fecal microbiota of PTI was modulated by cGA, such that abundance and diversity increased over time. The fecal microbiota was differently modified by consumption of human milk, either MOM or DHM, versus PF. Ongoing studies are investigating the effect of milk fortifiers and other NICU environmental factors on the gut microbiota. Funding Sources Supported by a seed grant from Carle Foundation Hospital and University of Illinois and a CONACyT Graduate Fellowship.


2021 ◽  
Vol 12 ◽  
Author(s):  
Monica F. Torrez Lamberti ◽  
Natalie A. Harrison ◽  
Marion M. Bendixen ◽  
Evon M. DeBose-Scarlett ◽  
Sharon C. Thompson ◽  
...  

Feeding preterm infants mother’s own milk (MOM) lowers rates of sepsis, decreases necrotizing enterocolitis, and shortens hospital stay. In the absence of freshly expressed MOM, frozen MOM (FMOM) is provided. When MOM is unavailable, preterm infants are often fed pasteurized donor human milk (DHM), rendering it devoid of beneficial bacteria. We have previously reported that when MOM is inoculated into DHM to restore the live microbiota [restored milk (RM)], a similar microbial diversity to MOM can be achieved. Yet, it is unknown if a similar diversity to MOM can be obtained when FMOM is inoculated into DHM. The goal of this study was to determine whether a similar microbial composition to MOM could be obtained when FMOM is used to personalize DHM. To this end, a fresh sample of MOM was obtained and divided into fresh and frozen fractions. MOM and FMOM were inoculated into DHM at different dilutions: MOM/FMOM 10% (RM/FRM10) and MOM/FMOM 30% (RM/FRM30) and incubated at 37°C. At different timepoints, culture-dependent and culture-independent techniques were performed. Similar microbiota expansion and alpha diversity were observed in MOM, RM10, and RM30 whether fresh or frozen milk was used as the inoculum. To evaluate if microbial expansion would result in an abnormal activation on the innate immune system, Caco-2 epithelial cells were exposed to RM/FRM to compare interleukin 8 levels with Caco-2 cells exposed to MOM or DHM. It was found that RM samples did not elicit a significant increase in IL-8 levels when compared to MOM or FMOM. These results suggest that FMOM can be used to inoculate DHM if fresh MOM is unavailable or limited in supply, allowing both fresh MOM and FMOM to be viable options in a microbial restoration strategy.


Sign in / Sign up

Export Citation Format

Share Document