Long Noncoding RNA HAND2-AS1 Suppresses Cell Proliferation, Migration, and Invasion of Bladder Cancer via miR-17-5p/KLF9 Axis

2022 ◽  
Author(s):  
Xiaoming Yang ◽  
Xiaosong Wei ◽  
Chengzhi Yi ◽  
Yang Yang ◽  
Zhiwei Fang ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yifan Chen ◽  
Wentao Zhang ◽  
Liliang Shen ◽  
Aimaitiaji Kadier ◽  
Jianhua Huang ◽  
...  

Purpose. The long noncoding RNA LUCAT1 (lung cancer-associated transcript 1) has been reported to be highly expressed in bladder cancer samples, but its role and molecular mechanisms need to be elucidated. Methods. Bioinformatics methods show that miR-181c-5p is a target of LUCAT1. Here, we aimed to reveal whether LUCAT1 participates in the development of bladder cancer via targeting miR-181c-5p. The expression levels of LUCAT1 and miR-181c-5p were detected by RT-PCR technology in bladder cells and tissues. The effects of the LUCAT1/miR-181c-5p axis on cell proliferation, migration, invasion, and apoptosis were tested by CCK-8, wound healing, Transwell chambers, and flow cytometry assays. The expressions of apoptosis/migration-related proteins were detected by western blotting assays. Results. The results demonstrated that LUCAT1 was overexpressed in bladder cancer tissue and cells, while miR-181c-5p showed a low expression pattern as compared to normal bladder cells and tissues. Cell proliferation, migration, and invasion capacities were significantly impaired, and cell apoptosis was enhanced when LUCAT1 was silenced in UM-UC-3 and T24 cell lines, but this effect was abolished by miR-181c-5p downregulation. In addition, miR-181c-5p downregulation impaired LUCAT1 downregulation which mediated the decreased expressions of Bcl2 and N-cadherin and the increased expressions of Bax and E-cadherin. Moreover, we found that KRAS was a direct target of miR-181c-5p and was under the positive regulation of LUCAT1. Conclusion. Collectively, this study reveals that knockdown of LUCAT1 inhibits the migration and invasion of bladder cancer cells in a miR-181c-5p-dependent manner, which may be related to KRAS downregulation.


2018 ◽  
Vol 21 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Xinhui Liao ◽  
Jieqing Chen ◽  
Yuchen Liu ◽  
Anbang He ◽  
Jianting Wu ◽  
...  

2019 ◽  
Vol 11 ◽  
pp. 175883591987464 ◽  
Author(s):  
Hongye Jiang ◽  
Yong Li ◽  
Jie Li ◽  
Xuyu Zhang ◽  
Gang Niu ◽  
...  

Background: A review of the evidence has indicated the critical role of long noncoding RNA (lncRNA) LSINCT5 in a large number of human cancers. However, the mechanistic involvement of LSINCT5 in endometrial carcinoma (EC) is still unknown. Here the authors aim to characterize the expression status of LSINCT5 and elucidate its mechanistic relevance to EC. Methods: Relative expression of LSINCT5 and HMGA2 were quantified by a real-time polymerase chain reaction. SiRNAs were employed to specifically knockdown endogenous LSINCT5 in EC cells. Cell proliferation was measured with Cell Count Kit-8 kit (CCK-8, Dojindo, Kumamoto, Japan) and cell growth was assessed by a colony formation assay. The cell cycle was analyzed with propidium iodide (PI) staining. Apoptotic cells were determined by flow cytometry after Annexin V/PI double-staining. Cell migration was evaluated by a wound-healing assay, and cell invasion was assessed using a transwell migration assay. The protein levels of HMGA2, Wnt3a, p-β-catenin, c-myc, β-actin, and GAPDH were determined by western blot. Results: The authors observed positively correlated and aberrantly up-regulated LSINCT5 and HMGA2 in EC. LSINCT5 deficiency significantly inhibited cell proliferation, cell cycle progression, and induced apoptosis. Meanwhile, cell migration and invasion were greatly compromised by the LSINCT5 knockdown. LSINCT5 stabilized HMGA2, which subsequently stimulated activation of Wnt/β-catenin signaling and consequently contributed to the oncogenic properties of LSINCT5 in EC. Conclusions: Our data uncovered the oncogenic activities and highlighted the mechanistic contributions of the LSINCT5-HMGA2-Wnt/β-catenin signaling pathway in EC.


Sign in / Sign up

Export Citation Format

Share Document