scholarly journals A new class of integral transforms

1960 ◽  
Vol 11 (2) ◽  
pp. 290-290 ◽  
Author(s):  
Ta Li
1964 ◽  
Vol 14 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Jet Wimp

In this paper we discuss a new class of integral transforms and their inversion formula. The kernel in the transform is a G-function (for a treatment of this function, see ((1), 5.3) and integration is performed with respect to the argument of that function. In the inversion formula, the kernel is likewise a G-function, but there integration is performed with respect to a parameter. Known special cases of our results are the Kontorovitch-Lebedev transform pair ((2), v. 2; (3))and the generalised Mehler transform pair (7)These transforms are used in solving certain boundary value problems of the wave or heat conduction equation involving wedge or conically-shaped boundaries, and are extensively tabulated in (6).


2019 ◽  
Vol 32 (2) ◽  
pp. 93
Author(s):  
Aqeel Ketab AL-khafaji

    New class A^* (a,c,k,β,α,γ,μ)  is introduced of meromorphic univalent functions with positive coefficient f(z)=□(1/z)+∑_(n=1)^∞▒〖a_n z^n 〗,(a_n≥0,z∈U^*,∀ n∈ N={1,2,3,…}) defined by the integral operator in the punctured unit disc U^*={z∈C∶0<|z|<1}, satisfying |(z^2 (I^k (L^* (a,c)f(z)))^''+2z(I^k (L^* (a,c)f(z)))^')/(βz(I^k (L^* (a,c)f(z)))^''-α(1+γ)z(I^k (L^* (a,c)f(z)))^' )|<μ,(0<μ≤1,0≤α,γ<1,0<β≤1/2 ,k=1,2,3,… ) . Several properties were studied like coefficient estimates, convex set and weighted mean.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
S. Iqbal ◽  
M. Samraiz ◽  
Thabet Abdeljawad ◽  
Kottakkaran Sooppy Nisar ◽  
G. Rahman ◽  
...  

AbstractIt is always attractive and motivating to acquire the generalizations of known results. In this article, we introduce a new class $\mathfrak{C(h)}$ C ( h ) of functions which can be represented in a form of integral transforms involving general kernel with σ-finite measure. We obtain some new Pólya–Szegö and Čebyšev type inequalities as generalizations to the previously proved ones for different fractional integrals including fractional integral of a function with respect to another function capturing Riemann–Liouville integrals, Hadamard fractional integrals, Katugampola fractional integral operators, and conformable fractional integrals. This new idea shall motivate the researchers to prove the results over a measure space with general kernels instead of special kernels.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Waseem Ahmad Khan ◽  
Hassen Aydi ◽  
Musharraf Ali ◽  
Mohd Ghayasuddin ◽  
Jihad Younis

The main motive of this study is to present a new class of a generalized k -Bessel–Maitland function by utilizing the k -gamma function and Pochhammer k -symbol. By this approach, we deduce a few analytical properties as usual differentiations and integral transforms (likewise, Laplace transform, Whittaker transform, beta transform, and so forth) for our presented k -Bessel–Maitland function. Also, the k -fractional integration and k -fractional differentiation of abovementioned k -Bessel–Maitland functions are also pointed out systematically.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
G. C. Ruben ◽  
K. Iqbal ◽  
I. Grundke-Iqbal ◽  
H. Wisniewski ◽  
T. L. Ciardelli ◽  
...  

In neurons, the microtubule associated protein, tau, is found in the axons. Tau stabilizes the microtubules required for neurotransmitter transport to the axonal terminal. Since tau has been found in both Alzheimer neurofibrillary tangles (NFT) and in paired helical filaments (PHF), the study of tau's normal structure had to preceed TEM studies of NFT and PHF. The structure of tau was first studied by ultracentrifugation. This work suggested that it was a rod shaped molecule with an axial ratio of 20:1. More recently, paraciystals of phosphorylated and nonphosphoiylated tau have been reported. Phosphorylated tau was 90-95 nm in length and 3-6 nm in diameter where as nonphosphorylated tau was 69-75 nm in length. A shorter length of 30 nm was reported for undamaged tau indicating that it is an extremely flexible molecule. Tau was also studied in relation to microtubules, and its length was found to be 56.1±14.1 nm.


Author(s):  
T. F. Kelly ◽  
P. J. Lee ◽  
E. E. Hellstrom ◽  
D. C. Larbalestier

Recently there has been much excitement over a new class of high Tc (>30 K) ceramic superconductors of the form A1-xBxCuO4-x, where A is a rare earth and B is from Group II. Unfortunately these materials have only been able to support small transport current densities 1-10 A/cm2. It is very desirable to increase these values by 2 to 3 orders of magnitude for useful high field applications. The reason for these small transport currents is as yet unknown. Evidence has, however, been presented for superconducting clusters on a 50-100 nm scale and on a 1-3 μm scale. We therefore planned a detailed TEM and STEM microanalysis study in order to see whether any evidence for the clusters could be seen.A La1.8Sr0.2Cu04 pellet was cut into 1 mm thick slices from which 3 mm discs were cut. The discs were subsequently mechanically ground to 100 μm total thickness and dimpled to 20 μm thickness at the center.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


2020 ◽  
Vol 7 (3) ◽  
pp. 786-794 ◽  
Author(s):  
Jingqi Han ◽  
Kin-Man Tang ◽  
Shun-Cheung Cheng ◽  
Chi-On Ng ◽  
Yuen-Kiu Chun ◽  
...  

A new class of luminescent cyclometalated Ir(iii) complexes with readily tunable mechanochromic properties derived from the mechanically induced trans-to-cis isomerization have been developed.


Sign in / Sign up

Export Citation Format

Share Document