scholarly journals Epithelial Cell Polarity Alters Rho-GTPase Responses toPseudomonas aeruginosa

2004 ◽  
Vol 15 (2) ◽  
pp. 411-419 ◽  
Author(s):  
Barbara I. Kazmierczak ◽  
Keith Mostov ◽  
Joanne N. Engel

Pseudomonas aeruginosa is an opportunistic human pathogen that preferentially infects damaged epithelial tissues. Previous studies have failed to distinguish whether the increased susceptibility of injured epithelium results from the loss of cell polarity or increased access to the basolateral surface. We have used confluent monolayers of Madin-Darby canine kidney (MDCK) cells cultured on porous filter supports for 1-3 d as a model system to investigate whether the differentiation state of a polarized model epithelium affected the response of epithelial cells to this pathogen. Confluent incompletely polarized MDCK cell monolayers (day 1) efficiently internalized apically applied P. aeruginosa via a pathway that required actin polymerization and activation of Rho-family GTPases and was accompanied by an increase in the amount of activated RhoA. In contrast, P. aeruginosa entry into highly polarized MDCK monolayers (day 3) was 10- to 100-fold less efficient and was insensitive to inhibitors of actin polymerization or of Rho-family GTPase activation. There was no activation of RhoA; instead, Cdc42-GTP levels increased significantly. Basolateral infection of highly polarized MDCK monolayers was less efficient and insensitive to Clostridium difficile Toxin B, whereas basolateral infection of incompletely polarized MDCK monolayers was more efficient and required activation of Rho-family GTPases. Together, our findings suggest that as epithelial barrier differentiates and becomes highly polarized, it becomes resistant to P. aeruginosa infection. Nevertheless, polarized epithelial cells still sense the presence of apically infecting P. aeruginosa, but they may do so through a different group of surface proteins and/or downstream signaling pathways than do incompletely polarized cells.

1999 ◽  
Vol 112 (13) ◽  
pp. 2069-2080 ◽  
Author(s):  
J. Mounier ◽  
V. Laurent ◽  
A. Hall ◽  
P. Fort ◽  
M.F. Carlier ◽  
...  

Shigella flexneri, an invasive bacterial pathogen, promotes formation of two cytoskeletal structures: the entry focus that mediates bacterial uptake into epithelial cells and the actin-comet tail that enables the bacteria to spread intracellularly. During the entry step, secretion of bacterial invasins causes a massive burst of subcortical actin polymerization leading the formation of localised membrane projections. Fusion of these membrane ruffles leads to bacterial internalization. Inside the cytoplasm, polar expression of the IcsA protein on the bacterial surface allows polymerization of actin filaments and their organization into an actin-comet tail leading to bacterial spread. The Rho family of small GTPases plays an essential role in the organization and regulation of cellular cytoskeletal structures (i.e. filopodia, lamellipodia, adherence plaques and intercellular junctions). We show here that induction of Shigella entry foci is controlled by the Cdc42, Rac and Rho GTPases, but not by RhoG. In contrast, actin-driven intracellular motility of Shigella does not require Rho GTPases. Therefore, Shigella appears to manipulate the epithelial cell cytoskeleton both by Rho GTPase-dependent and -independent processes.


2001 ◽  
Vol 152 (6) ◽  
pp. 1183-1196 ◽  
Author(s):  
Atsushi Suzuki ◽  
Tomoyuki Yamanaka ◽  
Tomonori Hirose ◽  
Naoyuki Manabe ◽  
Keiko Mizuno ◽  
...  

We have previously shown that during early Caenorhabditis elegans embryogenesis PKC-3, a C. elegans atypical PKC (aPKC), plays critical roles in the establishment of cell polarity required for subsequent asymmetric cleavage by interacting with PAR-3 [Tabuse, Y., Y. Izumi, F. Piano, K.J. Kemphues, J. Miwa, and S. Ohno. 1998. Development (Camb.). 125:3607–3614]. Together with the fact that aPKC and a mammalian PAR-3 homologue, aPKC-specific interacting protein (ASIP), colocalize at the tight junctions of polarized epithelial cells (Izumi, Y., H. Hirose, Y. Tamai, S.-I. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K.J. Kemphues, and S. Ohno. 1998. J. Cell Biol. 143:95–106), this suggests a ubiquitous role for aPKC in establishing cell polarity in multicellular organisms. Here, we show that the overexpression of a dominant-negative mutant of aPKC (aPKCkn) in MDCK II cells causes mislocalization of ASIP/PAR-3. Immunocytochemical analyses, as well as measurements of paracellular diffusion of ions or nonionic solutes, demonstrate that the biogenesis of the tight junction structure itself is severely affected in aPKCkn-expressing cells. Furthermore, these cells show increased interdomain diffusion of fluorescent lipid and disruption of the polarized distribution of Na+,K+-ATPase, suggesting that epithelial cell surface polarity is severely impaired in these cells. On the other hand, we also found that aPKC associates not only with ASIP/PAR-3, but also with a mammalian homologue of C. elegans PAR-6 (mPAR-6), and thereby mediates the formation of an aPKC-ASIP/PAR-3–PAR-6 ternary complex that localizes to the apical junctional region of MDCK cells. These results indicate that aPKC is involved in the evolutionarily conserved PAR protein complex, and plays critical roles in the development of the junctional structures and apico-basal polarization of mammalian epithelial cells.


2003 ◽  
Vol 14 (12) ◽  
pp. 4958-4970 ◽  
Author(s):  
Keith G. Kozminski ◽  
Laure Beven ◽  
Elizabeth Angerman ◽  
Amy Hin Yan Tong ◽  
Charles Boone ◽  
...  

Polarized cell growth requires the coupling of a defined spatial site on the cell cortex to the apparatus that directs the establishment of cell polarity. In the budding yeast Saccharomyces cerevisiae, the Ras-family GTPase Rsr1p/Bud1p and its regulators select the proper site for bud emergence on the cell cortex. The Rho-family GTPase Cdc42p and its associated proteins then establish an axis of polarized growth by triggering an asymmetric organization of the actin cytoskeleton and secretory apparatus at the selected bud site. We explored whether a direct linkage exists between the Rsr1p/Bud1p and Cdc42p GTPases. Here we show specific genetic interactions between RSR1/BUD1 and particular cdc42 mutants defective in polarity establishment. We also show that Cdc42p coimmunoprecipitated with Rsr1p/Bud1p from yeast extracts. In vitro studies indicated a direct interaction between Rsr1p/Bud1p and Cdc42p, which was enhanced by Cdc24p, a guanine nucleotide exchange factor for Cdc42p. Our findings suggest that Cdc42p interacts directly with Rsr1p/Bud1p in vivo, providing a novel mechanism by which direct contact between a Ras-family GTPase and a Rho-family GTPase links the selection of a growth site to polarity establishment.


2015 ◽  
Vol 47 (2) ◽  
pp. 24-32 ◽  
Author(s):  
Jen X. Xu ◽  
Tzong-Shi Lu ◽  
Suyan Li ◽  
Yong Wu ◽  
Lai Ding ◽  
...  

Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused β-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023 X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/β-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD.


2003 ◽  
Vol 284 (6) ◽  
pp. C1397-C1404 ◽  
Author(s):  
Dezheng Zhao ◽  
Sabina Kuhnt-Moore ◽  
Huiyan Zeng ◽  
Jack S. Wu ◽  
Mary P. Moyer ◽  
...  

Neurotensin (NT), a neuropeptide highly expressed in the gastrointestinal tract, participates in the pathophysiology of intestinal inflammation. We recently showed that NT stimulates interleukin-8 (IL-8) expression in NCM460 nontransformed human colonic epithelial cells via both mitogen-activating protein kinase (MAPK)- and NF-κB-dependent pathways. However, the molecular mechanism by which NT induces expression of proinflammatory cytokines such as IL-8 has not been investigated. In this study we show that inhibition of endogenous Rho family proteins (RhoA, Rac1, and Cdc42) by their respective dominant negative mutants inhibits NT-induced IL-8 protein production and promoter activity. Western blot experiments demonstrated that NT strongly activated RhoA, Rac1, and Cdc42. Overexpression of the dominant negative mutants of RhoA, Rac1, and Cdc42 significantly inhibited NT-induced NF-κB-dependent reporter gene expression and NF-κB DNA binding activity. NT also stimulated p38 MAPK phosphorylation, and overexpression of dominant negative mutants of RhoA, Rac1, and Cdc42 did not significantly alter p38 and ERK1/2 phosphorylation in response to NT. Together, our findings indicate that NT-stimulated IL-8 expression is mediated via a Rho-dependent NF-κB-mediated pathway.


2006 ◽  
Vol 291 (4) ◽  
pp. F790-F795 ◽  
Author(s):  
Mahesh Basireddy ◽  
Jason T. Lindsay ◽  
Anupam Agarwal ◽  
Daniel F. Balkovetz

Induction of heme oxygenase-1 (HO-1) in renal tubules occurs as an adaptive and beneficial response in acute renal failure (ARF) following ischemia and nephrotoxins. Using an in vitro model of polarized Madin-Darby canine kidney (MDCK) epithelial cells, we examined apical and basolateral cell surface sensitivity to HO-1 induction by heme. Basolateral exposure to 5 μM hemin (heme chloride) resulted in higher HO-1 induction than did apical exposure. The peak induction of HO-1 by basolateral application of hemin occurred between 12 and 18 h of exposure and was dose dependent. Similar cell surface sensitivity to hemin-induced HO-1 expression was observed using a mouse cortical collecting duct cell line (94D cells). Hepatocyte growth factor (HGF) is known to decrease cell polarity of MDCK cells. Following pretreatment with HGF, apically applied hemin gave greater stimulation of HO-1 expression, whereas HGF alone did not induce HO-1. We also examined the effect of hypoxia on hemin-mediated HO-1 induction. MDCK cells were subjected to hypoxia (1% O2) for 24 h to simulate the effects of ischemic ARF. Under hypoxic conditions, both apical as well as basolateral surfaces of MDCK were more sensitive to HO-1 induction by hemin. Hypoxia alone did not induce HO-1 but appeared to potentiate both apical and basolateral sensitivity to hemin-mediated induction. These data demonstrate that the induction of HO-1 expression in polarized renal epithelia by heme is achieved primarily via basolateral exposure. However, under conditions of altered renal epithelial cell polarity and hypoxia, increased HO-1 induction occurs following apical exposure to heme.


2014 ◽  
Vol 25 (20) ◽  
pp. 3133-3146 ◽  
Author(s):  
Susana Lechuga ◽  
Somesh Baranwal ◽  
Chao Li ◽  
Nayden G. Naydenov ◽  
John F. Kuemmerle ◽  
...  

Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA–depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis.


2009 ◽  
Vol 296 (3) ◽  
pp. F564-F574 ◽  
Author(s):  
Paul R. Brakeman ◽  
Kathleen D. Liu ◽  
Kazuya Shimizu ◽  
Yoshimi Takai ◽  
Keith E. Mostov

Development of the nephron requires conversion of the metanephric mesenchyme into tubular epithelial structures with specifically organized intercellular junctions. The nectin proteins are a family of transmembrane proteins that dimerize to form intercellular junctional complexes between epithelial cells. In this study, we demonstrate that nectin junctions appear during the earliest stages of epithelial cell morphogenesis in the murine nephron concurrently with the transition of mesenchymal cells into epithelial cells. We have defined the role of nectin during epithelial cell morphogenesis by studying nectin in a three-dimensional culture of Madin-Darby canine kidney (MDCK) cells. In a three-dimensional culture of MDCK cells grown in purified type 1 collagen, expression of a dominant negative form of nectin causes disruption of the formation of cell polarity and disruption of tight junction (TJ) formation, as measured by zonula occludens-1 (ZO-1) localization. In MDCK cells cultured in Matrigel, exogenous expression of nectin-1 causes disruption of normal epithelial cell cyst formation and decreased apoptosis. These data demonstrate that nectins play an important role in normal epithelial cell morphogenesis and may play a role in mesenchymal-to-epithelial transition during nephrogenesis by providing an antiapoptotic signal and promoting the formation of TJs and cell polarity.


2003 ◽  
Vol 71 (5) ◽  
pp. 2885-2891 ◽  
Author(s):  
Alison K. Criss ◽  
James E. Casanova

ABSTRACT Salmonella enterica serovar Typhimurium can infect epithelial cells via the basolateral surface after breaching the intestinal epithelium, yet little is known about this process. Here, we show that actin polymerization driven by the Arp2/3 complex is critical to both basolateral and apical bacterial invasion of polarized MDCK cells. While there is also a dependence upon toxin B-sensitive Rho GTPases, none of the four GTPases known to be activated by S. enterica serovar Typhimurium SopE are individually required for basolateral internalization. These results underscore that the specific factors required for Salmonella invasion differ between membrane domains of polarized epithelia.


Sign in / Sign up

Export Citation Format

Share Document