scholarly journals Nse1 RING-like Domain Supports Functions of the Smc5-Smc6 Holocomplex in Genome Stability

2008 ◽  
Vol 19 (10) ◽  
pp. 4099-4109 ◽  
Author(s):  
Stephanie Pebernard ◽  
J. Jefferson P. Perry ◽  
John A. Tainer ◽  
Michael N. Boddy

The Smc5-Smc6 holocomplex plays essential but largely enigmatic roles in chromosome segregation, and facilitates DNA repair. The Smc5-Smc6 complex contains six conserved non-SMC subunits. One of these, Nse1, contains a RING-like motif that often confers ubiquitin E3 ligase activity. We have functionally characterized the Nse1 RING-like motif, to determine its contribution to the chromosome segregation and DNA repair roles of Smc5-Smc6. Strikingly, whereas a full deletion of nse1 is lethal, the Nse1 RING-like motif is not essential for cellular viability. However, Nse1 RING mutant cells are hypersensitive to a broad spectrum of genotoxic stresses, indicating that the Nse1 RING motif promotes DNA repair functions of Smc5-Smc6. We tested the ability of both human and yeast Nse1 to mediate ubiquitin E3 ligase activity in vitro and found no detectable activity associated with full-length Nse1 or the isolated RING domains. Interestingly, however, the Nse1 RING-like domain is required for normal Nse1-Nse3-Nse4 trimer formation in vitro and for damage-induced recruitment of Nse4 and Smc5 to subnuclear foci in vivo. Thus, we propose that the Nse1 RING-like motif is a protein–protein interaction domain required for Smc5-Smc6 holocomplex integrity and recruitment to, or retention at, DNA lesions.

2021 ◽  
Vol 118 (8) ◽  
pp. e2017497118
Author(s):  
Guangxue Liu ◽  
Jiaqi Yan ◽  
Xuejie Wang ◽  
Junliang Chen ◽  
Xin Wang ◽  
...  

The ubiquitin E3 ligase Bre1-mediated H2B monoubiquitination (H2Bub) is essential for proper DNA replication and repair in eukaryotes. Deficiency in H2Bub causes genome instability and cancer. How the Bre1–H2Bub pathway is evoked in response to DNA replication or repair remains unknown. Here, we identify that the single-stranded DNA (ssDNA) binding factor RPA acts as a key mediator that couples Bre1-mediated H2Bub to DNA replication and repair in yeast. We found that RPA interacts with Bre1 in vitro and in vivo, and this interaction is stimulated by ssDNA. This association ensures the recruitment of Bre1 to replication forks or DNA breaks but does not affect its E3 ligase activity. Disruption of the interaction abolishes the local enrichment of H2Bub, resulting in impaired DNA replication, response to replication stress, and repair by homologous recombination, accompanied by increased genome instability and DNA damage sensitivity. Notably, we found that RNF20, the human homolog of Bre1, interacts with RPA70 in a conserved mode. Thus, RPA functions as a master regulator for the spatial–temporal control of H2Bub chromatin landscape during DNA replication and recombination, extending the versatile roles of RPA in guarding genome stability.


2005 ◽  
Vol 79 (18) ◽  
pp. 11824-11836 ◽  
Author(s):  
Mingzhou Chen ◽  
Jean-Claude Cortay ◽  
Ian R. Logan ◽  
Vasileia Sapountzi ◽  
Craig N. Robson ◽  
...  

ABSTRACT Using a C-terminal domain (PCT) of the measles virus (MV) phosphoprotein (P protein) as bait in a yeast two-hybrid screen, a cDNA identical to the recently described human p53-induced-RING-H2 (hPIRH2) cDNA was isolated. A glutathione S-transferase-hPIRH2 fusion protein expressed in bacteria was able to pull down P protein when mixed with an extract from P-expressing HeLa cells in vitro, and myc-tagged hPIRH2 could be reciprocally coimmunoprecipitated with MV P protein from human cells. Additionally, immunoprecipitation experiments demonstrated that hPIRH2-myc, MV P, and nucleocapsid (N) proteins form a ternary complex. The hPIRH2 binding site was mapped to the C-terminal X domain region of the P protein by using a yeast two-hybrid assay. The PCT binding site was mapped on hPIRH2 by using a novel yeast two-hybrid tagged PCR approach and by coimmunoprecipitation of hPIRH2 cysteine mutants and mouse/human PIRH2 chimeras. The hPIRH2 C terminus could mediate the interaction with MV P which was favored by the RING-H2 motif. When coexpressed with an enhanced green fluorescent protein-tagged hPIRH2 protein, MV P alone or in a complex with MV N was able to redistribute hPIRH2 to outside the nucleus, within intracellular aggregates. Finally, MV P efficiently stabilized hPIRH2-myc expression and prevented its ubiquitination in vivo but had no effect on the stability or ubiquitination of an alternative ubiquitin E3 ligase, Mdm2. Thus, MV P protein is the first protein from a pathogen that is able to specifically interact with and stabilize the ubiquitin E3 ligase hPIRH2 by preventing its ubiquitination.


Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2352-2366 ◽  
Author(s):  
Guo-zhong Yi ◽  
Guanglong Huang ◽  
Manlan Guo ◽  
Xi’an Zhang ◽  
Hai Wang ◽  
...  

Abstract The acquisition of temozolomide resistance is a major clinical challenge for glioblastoma treatment. Chemoresistance in glioblastoma is largely attributed to repair of temozolomide-induced DNA lesions by O6-methylguanine-DNA methyltransferase (MGMT). However, some MGMT-deficient glioblastomas are still resistant to temozolomide, and the underlying molecular mechanisms remain unclear. We found that DYNC2H1 (DHC2) was expressed more in MGMT-deficient recurrent glioblastoma specimens and its expression strongly correlated to poor progression-free survival in MGMT promotor methylated glioblastoma patients. Furthermore, silencing DHC2, both in vitro and in vivo, enhanced temozolomide-induced DNA damage and significantly improved the efficiency of temozolomide treatment in MGMT-deficient glioblastoma. Using a combination of subcellular proteomics and in vitro analyses, we showed that DHC2 was involved in nuclear localization of the DNA repair proteins, namely XPC and CBX5, and knockdown of either XPC or CBX5 resulted in increased temozolomide-induced DNA damage. In summary, we identified the nuclear transportation of DNA repair proteins by DHC2 as a critical regulator of acquired temozolomide resistance in MGMT-deficient glioblastoma. Our study offers novel insights for improving therapeutic management of MGMT-deficient glioblastoma.


Author(s):  
Yi Chieh Lim ◽  
Kathleen S Ensbey ◽  
Carolin Offenhäuser ◽  
Rochelle C J D’souza ◽  
Jason K Cullen ◽  
...  

Abstract Background Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair. Methods In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships. Results Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell–like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action. Conclusion Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.


1990 ◽  
Vol 8 (12) ◽  
pp. 2062-2084 ◽  
Author(s):  
R J Epstein

Cytotoxic drugs act principally by damaging tumor-cell DNA. Quantitative analysis of this interaction provides a basis for understanding the biology of therapeutic cell kill as well as a rational strategy for optimizing and predicting tumor response. Recent advances have made it possible to correlate assayed DNA lesions with cytotoxicity in tumor cell lines, in animal models, and in patients with malignant disease. In addition, many of the complex interrelationships between DNA damage, DNA repair, and alterations of gene expression in response to DNA damage have been defined. Techniques for modulating DNA damage and cytotoxicity using schedule-specific cytotoxic combinations, DNA repair inhibitors, cell-cycle manipulations, and adjunctive noncytotoxic drug therapy are being developed, and critical therapeutic targets have been identified within tumor-cell subpopulations and genomic DNA alike. Most importantly, methods for predicting clinical response to cytotoxic therapy using both in vitro markers of tumor-cell sensitivity and in vivo measurements of drug-induced DNA damage are now becoming a reality. These advances can be expected to provide a strong foundation for the development of innovative cytotoxic drug strategies over the next decade.


2021 ◽  
Author(s):  
Linzi Sun ◽  
Razie Amraei ◽  
Nader Rahimi

ABSTRACTThe cell adhesion molecule immunoglobulin and proline-rich receptor-1 (IGPR-1) regulates various critical cellular processes including, cell-cell adhesion, mechanosensing and autophagy. However, the molecular mechanisms governing IGPR-1 cell surface expression levels remains unknown. In the present study, we used an in vitro ubiquitination assay and identified ubiquitin E3 ligase NEDD4 and the ubiquitin conjugating enzyme UbcH6 involved in the ubiquitination of IGPR-1. In vitro GST-pulldown and in vivo co-immunoprecipitation assays demonstrated that NEDD4 binds to IGPR-1. Over-expression of wild-type NEDD4 downregulated IGPR-1 and deletion of WW domains (1-4) of NEDD4 revoked its effects on IGPR-1. Similarly, knockdown of NEDD4 increased IGPR-1 levels in A375 melanoma cells. Furthermore, deletion of 57 amino acids encompassing polyproline rich (PPR) motif on the C-terminus of IGPR-1 nullified the binding of NEDD4 with IGPR-1. Moreover, we demonstrate that NEDD4 promotes K48- and K63-dependent polyubiquitination of IGPR-1. The NEDD4-mediated polyubiquitination of IGPR-1 stimulated lysosomal degradation of IGPR-1 as the treatment of cells with the lysosomal inhibitors, bafilomycine and ammonium chloride increased IGPR-1 levels in the HEK-293 cells ectopically expressing IGPR-1 and in multiple human skin melanoma cell lines. Hence, these findings suggest that ubiquitin E3 ligase NEDD4 is a key regulator of IGPR-1 with a significant implication in the therapeutic targeting of IGPR-1.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav4340 ◽  
Author(s):  
Shih-Hsun Chen ◽  
Xiaochun Yu

While poly(ADP-ribosyl)ation (PARylation) plays an important role in DNA repair, the role of dePARylation in DNA repair remains elusive. Here, we report that a novel small molecule identified from the NCI database, COH34, specifically inhibits poly(ADP-ribose) glycohydrolase (PARG), the major dePARylation enzyme, with nanomolar potency in vitro and in vivo. COH34 binds to the catalytic domain of PARG, thereby prolonging PARylation at DNA lesions and trapping DNA repair factors. This compound induces lethality in cancer cells with DNA repair defects and exhibits antitumor activity in xenograft mouse cancer models. Moreover, COH34 can sensitize tumor cells with DNA repair defects to other DNA-damaging agents, such as topoisomerase I inhibitors and DNA-alkylating agents, which are widely used in cancer chemotherapy. Notably, COH34 also efficiently kills PARP inhibitor–resistant cancer cells. Together, our study reveals the molecular mechanism of PARG in DNA repair and provides an effective strategy for future cancer therapies.


2021 ◽  
Author(s):  
John Heath ◽  
Estelle Simo Cheyou ◽  
Steven Findlay ◽  
Vincent Luo ◽  
Edgar Pinedo Carpio ◽  
...  

The heterochromatin protein HP1 plays a central role in the maintenance of genome stability, in particular by promoting homologous recombination (HR)-mediated DNA repair. However, little is still known about how HP1 is controlled during this process. Here, we describe a novel function of the POGO transposable element derived with ZNF domain protein (POGZ) in the regulation of HP1 during the DNA damage response in vitro. POGZ depletion delays the resolution of DNA double-strand breaks (DSBs) and correlates with an increased sensitivity to different DNA damaging agents, including the clinically-relevant Cisplatin and Talazoparib. Mechanistically, POGZ promotes homology-directed DNA repair pathways by retaining the BRCA1/BARD1 complex at DSBs, in a HP1-dependent manner. In vivo CRISPR inactivation of Pogz is embryonic lethal and Pogz haplo-insufficiency (Pogz+/Δ) results in a developmental delay, a deficit in intellectual abilities, a hyperactive behaviour as well as a compromised humoral immune response in mice, recapitulating the main clinical features of the White Sutton syndrome (WHSUS). Importantly, Pogz+/Δ mice are radiosensitive and accumulate DSBs in diverse tissues, including the spleen and the brain. Altogether, our findings identify POGZ as an important player in homology-directed DNA repair both in vitro and in vivo, with clinical implications for the WHSUS.


2015 ◽  
Vol 112 (49) ◽  
pp. 15130-15135 ◽  
Author(s):  
Victor G. Tagua ◽  
Marcell Pausch ◽  
Maike Eckel ◽  
Gabriel Gutiérrez ◽  
Alejandro Miralles-Durán ◽  
...  

DASH (Drosophila, Arabidopsis, Synechocystis, Human)-type cryptochromes (cry-DASH) belong to a family of flavoproteins acting as repair enzymes for UV-B–induced DNA lesions (photolyases) or as UV-A/blue light photoreceptors (cryptochromes). They are present in plants, bacteria, various vertebrates, and fungi and were originally considered as sensory photoreceptors because of their incapability to repair cyclobutane pyrimidine dimer (CPD) lesions in duplex DNA. However, cry-DASH can repair CPDs in single-stranded DNA, but their role in DNA repair in vivo remains to be clarified. The genome of the fungus Phycomyces blakesleeanus contains a single gene for a protein of the cryptochrome/photolyase family (CPF) encoding a cry-DASH, cryA, despite its ability to photoreactivate. Here, we show that cryA expression is induced by blue light in a Mad complex-dependent manner. Moreover, we demonstrate that CryA is capable of binding flavin (FAD) and methenyltetrahydrofolate (MTHF), fully complements the Escherichia coli photolyase mutant and repairs in vitro CPD lesions in single-stranded and double-stranded DNA with the same efficiency. These results support a role for Phycomyces cry-DASH as a photolyase and suggest a similar role for cry-DASH in mucoromycotina fungi.


Author(s):  
Pengcheng Ma ◽  
Yuwei Li ◽  
Huishan Wang ◽  
Bingyu Mao

Abstract TDP43 pathology is seen in a large majority of amyotrophic lateral sclerosis (ALS) cases, suggesting a central pathogenic role of this regulatory protein. Clarifying the molecular mechanism controlling TDP43 stability and subcellular location might provide important insights into ALS therapy. The ubiquitin E3 ligase RNF220 is involved in different neural developmental processes through various molecular targets in the mouse. Here, we report that the RNF220+/- mice showed progressively decreasing mobility to different extents, some of which developed typical ALS pathological characteristics in spinal motor neurons, including TDP43 cytoplasmic accumulation, atrocytosis, muscle denervation, and atrophy. Mechanistically, RNF220 interacts with TDP43 in vitro and in vivo and promotes its polyubiquitination and proteasomal degradation. In conclusion, we propose that RNF220 might be a modifier of TDP43 function in vivo and contribute to TDP43 pathology in neurodegenerative disease like ALS.


Sign in / Sign up

Export Citation Format

Share Document