scholarly journals Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution

2015 ◽  
Vol 112 (49) ◽  
pp. 15130-15135 ◽  
Author(s):  
Victor G. Tagua ◽  
Marcell Pausch ◽  
Maike Eckel ◽  
Gabriel Gutiérrez ◽  
Alejandro Miralles-Durán ◽  
...  

DASH (Drosophila, Arabidopsis, Synechocystis, Human)-type cryptochromes (cry-DASH) belong to a family of flavoproteins acting as repair enzymes for UV-B–induced DNA lesions (photolyases) or as UV-A/blue light photoreceptors (cryptochromes). They are present in plants, bacteria, various vertebrates, and fungi and were originally considered as sensory photoreceptors because of their incapability to repair cyclobutane pyrimidine dimer (CPD) lesions in duplex DNA. However, cry-DASH can repair CPDs in single-stranded DNA, but their role in DNA repair in vivo remains to be clarified. The genome of the fungus Phycomyces blakesleeanus contains a single gene for a protein of the cryptochrome/photolyase family (CPF) encoding a cry-DASH, cryA, despite its ability to photoreactivate. Here, we show that cryA expression is induced by blue light in a Mad complex-dependent manner. Moreover, we demonstrate that CryA is capable of binding flavin (FAD) and methenyltetrahydrofolate (MTHF), fully complements the Escherichia coli photolyase mutant and repairs in vitro CPD lesions in single-stranded and double-stranded DNA with the same efficiency. These results support a role for Phycomyces cry-DASH as a photolyase and suggest a similar role for cry-DASH in mucoromycotina fungi.

Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2352-2366 ◽  
Author(s):  
Guo-zhong Yi ◽  
Guanglong Huang ◽  
Manlan Guo ◽  
Xi’an Zhang ◽  
Hai Wang ◽  
...  

Abstract The acquisition of temozolomide resistance is a major clinical challenge for glioblastoma treatment. Chemoresistance in glioblastoma is largely attributed to repair of temozolomide-induced DNA lesions by O6-methylguanine-DNA methyltransferase (MGMT). However, some MGMT-deficient glioblastomas are still resistant to temozolomide, and the underlying molecular mechanisms remain unclear. We found that DYNC2H1 (DHC2) was expressed more in MGMT-deficient recurrent glioblastoma specimens and its expression strongly correlated to poor progression-free survival in MGMT promotor methylated glioblastoma patients. Furthermore, silencing DHC2, both in vitro and in vivo, enhanced temozolomide-induced DNA damage and significantly improved the efficiency of temozolomide treatment in MGMT-deficient glioblastoma. Using a combination of subcellular proteomics and in vitro analyses, we showed that DHC2 was involved in nuclear localization of the DNA repair proteins, namely XPC and CBX5, and knockdown of either XPC or CBX5 resulted in increased temozolomide-induced DNA damage. In summary, we identified the nuclear transportation of DNA repair proteins by DHC2 as a critical regulator of acquired temozolomide resistance in MGMT-deficient glioblastoma. Our study offers novel insights for improving therapeutic management of MGMT-deficient glioblastoma.


Author(s):  
Yi Chieh Lim ◽  
Kathleen S Ensbey ◽  
Carolin Offenhäuser ◽  
Rochelle C J D’souza ◽  
Jason K Cullen ◽  
...  

Abstract Background Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair. Methods In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships. Results Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell–like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action. Conclusion Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.


1990 ◽  
Vol 8 (12) ◽  
pp. 2062-2084 ◽  
Author(s):  
R J Epstein

Cytotoxic drugs act principally by damaging tumor-cell DNA. Quantitative analysis of this interaction provides a basis for understanding the biology of therapeutic cell kill as well as a rational strategy for optimizing and predicting tumor response. Recent advances have made it possible to correlate assayed DNA lesions with cytotoxicity in tumor cell lines, in animal models, and in patients with malignant disease. In addition, many of the complex interrelationships between DNA damage, DNA repair, and alterations of gene expression in response to DNA damage have been defined. Techniques for modulating DNA damage and cytotoxicity using schedule-specific cytotoxic combinations, DNA repair inhibitors, cell-cycle manipulations, and adjunctive noncytotoxic drug therapy are being developed, and critical therapeutic targets have been identified within tumor-cell subpopulations and genomic DNA alike. Most importantly, methods for predicting clinical response to cytotoxic therapy using both in vitro markers of tumor-cell sensitivity and in vivo measurements of drug-induced DNA damage are now becoming a reality. These advances can be expected to provide a strong foundation for the development of innovative cytotoxic drug strategies over the next decade.


Author(s):  
Bo Liang ◽  
Xudong Yuan ◽  
Gang Wei ◽  
Wei Wang ◽  
Ming Zhang ◽  
...  

AbstractTo curb the spread of SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, we characterize the virucidal activity of long-acting Povidone Iodine (PVP-I) compositions developed using an in-situ gel forming technology. The PVP-I gel forming nasal spray (IVIEW-1503) and PVP-I gel forming ophthalmic eye drop (IVIEW-1201) rapidly inactivated SARS-CoV-2, inhibiting the viral infection of VERO76 cells. No toxicity was observed for the PVP-I formulations. Significant inactivation was noted with preincubation of the virus with these PVP-I formulations at the lowest concentrations tested. It has been demonstrated that both PVP-I formulations can inactivate SARS-CoV-2 virus efficiently in both a dose-dependent and a time-dependent manner. These results suggest IVIEW-1503 and IVIEW-1201 could be potential agents to reduce or prevent the transmission of the virus through the nasal cavity and the eye, respectively. Further studies are needed to clinically evaluate these formulations in early-stage COVID-19 patients.


1998 ◽  
Vol 336 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Nobuko MIYAZAWA ◽  
Yoshimi KAWASAKI ◽  
Junichi FUJII ◽  
Myint THEINGI ◽  
Ayumu HOSHI ◽  
...  

An antibody has been raised against fructated lysine in proteins by immunizing fructated lysine-conjugated ovalbumin in rabbits. The affinity-purified antibody specifically recognized proteins incubated with fructose but not with other reducing sugars such as glucose, galactose or ribose, as judged by immunoblotting and ELISA techniques. Competitive binding to this antibody was observed specifically by fructated lysine but not by glucated lysine, glucose, fructose or lysine. The antibody binds specifically to fructated lysine residues in the protein but not to borohydride-reduced material or advanced glycation end products, indicating that the antibody recognizes only the reducing, carbonyl-containing forms produced in the early stage of the fructation reaction. When BSA was incubated with various concentrations of fructose, the reactivity of the antibody increased in a dose- and time-dependent manner. When soluble proteins prepared from either normal or streptozotocin-induced diabetic rat eyes were analysed by ELISA with this antibody, an increase in the reactive components was observed as a function of aging as well as under diabetic conditions. Western blotting analysis showed that lens crystallin reacted highly with this antibody. Because fructose is biosynthesized largely through the polyol pathway, which is enhanced under diabetic conditions, and lens is known to have a high activity of enzymes in this pathway, this antibody is capable of recognizing fructated proteins in vivo. Thus it is a potentially useful tool for investigating two major issues that seem to be involved in diabetic complications, namely the glycation reaction and the polyol pathway.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav4340 ◽  
Author(s):  
Shih-Hsun Chen ◽  
Xiaochun Yu

While poly(ADP-ribosyl)ation (PARylation) plays an important role in DNA repair, the role of dePARylation in DNA repair remains elusive. Here, we report that a novel small molecule identified from the NCI database, COH34, specifically inhibits poly(ADP-ribose) glycohydrolase (PARG), the major dePARylation enzyme, with nanomolar potency in vitro and in vivo. COH34 binds to the catalytic domain of PARG, thereby prolonging PARylation at DNA lesions and trapping DNA repair factors. This compound induces lethality in cancer cells with DNA repair defects and exhibits antitumor activity in xenograft mouse cancer models. Moreover, COH34 can sensitize tumor cells with DNA repair defects to other DNA-damaging agents, such as topoisomerase I inhibitors and DNA-alkylating agents, which are widely used in cancer chemotherapy. Notably, COH34 also efficiently kills PARP inhibitor–resistant cancer cells. Together, our study reveals the molecular mechanism of PARG in DNA repair and provides an effective strategy for future cancer therapies.


2021 ◽  
Author(s):  
John Heath ◽  
Estelle Simo Cheyou ◽  
Steven Findlay ◽  
Vincent Luo ◽  
Edgar Pinedo Carpio ◽  
...  

The heterochromatin protein HP1 plays a central role in the maintenance of genome stability, in particular by promoting homologous recombination (HR)-mediated DNA repair. However, little is still known about how HP1 is controlled during this process. Here, we describe a novel function of the POGO transposable element derived with ZNF domain protein (POGZ) in the regulation of HP1 during the DNA damage response in vitro. POGZ depletion delays the resolution of DNA double-strand breaks (DSBs) and correlates with an increased sensitivity to different DNA damaging agents, including the clinically-relevant Cisplatin and Talazoparib. Mechanistically, POGZ promotes homology-directed DNA repair pathways by retaining the BRCA1/BARD1 complex at DSBs, in a HP1-dependent manner. In vivo CRISPR inactivation of Pogz is embryonic lethal and Pogz haplo-insufficiency (Pogz+/Δ) results in a developmental delay, a deficit in intellectual abilities, a hyperactive behaviour as well as a compromised humoral immune response in mice, recapitulating the main clinical features of the White Sutton syndrome (WHSUS). Importantly, Pogz+/Δ mice are radiosensitive and accumulate DSBs in diverse tissues, including the spleen and the brain. Altogether, our findings identify POGZ as an important player in homology-directed DNA repair both in vitro and in vivo, with clinical implications for the WHSUS.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jia Shi ◽  
Gang Chen ◽  
Xuchen Dong ◽  
Haoran Li ◽  
Suwen Li ◽  
...  

Acquired chemoresistance is a major limiting factor in the clinical treatment of glioblastoma (GBM). However, the mechanism by which GBM acquires therapeutic resistance remains unclear. Here, we aimed to investigate whether METTL3-mediated N6-methyladenosine (m6A) modification contributes to the temozolomide (TMZ) resistance in GBM. We demonstrated that METTL3 METTL3-mediated m6A modification were significantly elevated in TMZ-resistant GBM cells. Functionally, METTL3 overexpression impaired the TMZ-sensitivity of GBM cells. In contrast, METTL3 silencing or DAA-mediated total methylation inhibition improved the sensitivity of TMZ-resistant GBM cells to TMZ in vitro and in vivo. Furthermore, we found that two critical DNA repair genes (MGMT and APNG) were m6A-modified by METTL3, whereas inhibited by METTL3 silencing or DAA-mediated total methylation inhibition, which is crucial for METTL3-improved TMZ resistance in GBM cells. Collectively, METTL3 acts as a critical promoter of TMZ resistance in glioma and extends the current understanding of m6A related signaling, thereby providing new insights into the field of glioma treatment.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Yiping Wang ◽  
Rupkatha Mukhopadhyay ◽  
Sujayita Roy ◽  
Arun Kapoor ◽  
Yu-Pin Su ◽  
...  

ABSTRACTArtesunate (AS), a semisynthetic artemisinin approved for malaria therapy, inhibits human cytomegalovirus (HCMV) replicationin vitro, but therapeutic success in humans has been variable. We hypothesized that the shortin vivohalf-life of AS may contribute to the different treatment outcomes. We tested novel synthetic ozonides with longer half-lives against HCMVin vitroand mouse cytomegalovirus (MCMV)in vivo. Screening of the activities of four ozonides against a pp28-luciferase-expressing HCMV Towne recombinant identified OZ418 to have the best selectivity; its effective concentration inhibiting viral growth by 50% (EC50) was 9.8 ± 0.2 µM, and cytotoxicity in noninfected human fibroblasts (the concentration inhibiting cell growth by 50% [CC50]) was 128.1 ± 8.0 µM. In plaque reduction assays, OZ418 inhibited HCMV TB40 in a concentration-dependent manner as well as a ganciclovir (GCV)-resistant HCMV isolate. The combination of OZ418 and GCV was synergistic in HCMV inhibitionin vitro. Virus inhibition by OZ418 occurred at an early stage and was dependent on the cell density at the time of infection. OZ418 treatment reversed HCMV-mediated cell cycle progression and correlated with the reduction of HCMV-induced expression of pRb, E2F1, and cyclin-dependent kinases 1, 2, 4, and 6. In an MCMV model, once-daily oral administration of OZ418 had significantly improved efficacy against MCMV compared to that of twice-daily oral AS. A parallel pharmacokinetic study with a single oral dose of OZ418 or AS showed a prolonged plasma half-life and higher unbound concentrations of OZ418 than unbound concentrations of AS. In summary, ozonides are proposed to be potential therapeutics, alone or in combination with GCV, for HCMV infection in humans.


2008 ◽  
Vol 19 (10) ◽  
pp. 4099-4109 ◽  
Author(s):  
Stephanie Pebernard ◽  
J. Jefferson P. Perry ◽  
John A. Tainer ◽  
Michael N. Boddy

The Smc5-Smc6 holocomplex plays essential but largely enigmatic roles in chromosome segregation, and facilitates DNA repair. The Smc5-Smc6 complex contains six conserved non-SMC subunits. One of these, Nse1, contains a RING-like motif that often confers ubiquitin E3 ligase activity. We have functionally characterized the Nse1 RING-like motif, to determine its contribution to the chromosome segregation and DNA repair roles of Smc5-Smc6. Strikingly, whereas a full deletion of nse1 is lethal, the Nse1 RING-like motif is not essential for cellular viability. However, Nse1 RING mutant cells are hypersensitive to a broad spectrum of genotoxic stresses, indicating that the Nse1 RING motif promotes DNA repair functions of Smc5-Smc6. We tested the ability of both human and yeast Nse1 to mediate ubiquitin E3 ligase activity in vitro and found no detectable activity associated with full-length Nse1 or the isolated RING domains. Interestingly, however, the Nse1 RING-like domain is required for normal Nse1-Nse3-Nse4 trimer formation in vitro and for damage-induced recruitment of Nse4 and Smc5 to subnuclear foci in vivo. Thus, we propose that the Nse1 RING-like motif is a protein–protein interaction domain required for Smc5-Smc6 holocomplex integrity and recruitment to, or retention at, DNA lesions.


Sign in / Sign up

Export Citation Format

Share Document