scholarly journals Novel Roles of Hakai in Cell Proliferation and Oncogenesis

2009 ◽  
Vol 20 (15) ◽  
pp. 3533-3542 ◽  
Author(s):  
Angélica Figueroa ◽  
Hirokazu Kotani ◽  
Yoshinobu Toda ◽  
Krystyna Mazan-Mamczarz ◽  
Eva-Christina Mueller ◽  
...  

During tumor development, cells acquire multiple phenotypic changes upon misregulation of oncoproteins and tumor suppressor proteins. Hakai was originally identified as an E3 ubiquitin-ligase for the E-cadherin complex that regulates cell–cell contacts. Here, we present evidence that Hakai plays a crucial role in various cellular processes and tumorigenesis. Overexpression of Hakai affects not only cell–cell contacts but also proliferation in both epithelial and fibroblast cells. Furthermore, the knockdown of Hakai significantly suppresses proliferation of transformed epithelial cells. Expression of Hakai is correlated to the proliferation rate in human tissues and is highly up-regulated in human colon and gastric adenocarcinomas. Moreover, we identify PTB-associated splicing factor (PSF), an RNA-binding protein, as a novel Hakai-interacting protein. By using cDNA arrays, we have determined various specific PSF-associated mRNAs encoding proteins that are involved in several cancer-related processes. Hakai affects the ability of PSF to bind these mRNAs, and expression of PSF short hairpin RNA or a dominant-negative PSF mutant significantly suppresses proliferation of Hakai-overexpressing cells. Collectively, these results suggest that Hakai is an important regulator of cell proliferation and that Hakai may be an oncoprotein and a potential molecular target for cancer treatment.

2020 ◽  
Author(s):  
Lucía Cordero-Espinoza ◽  
Timo N. Kohler ◽  
Anna M. Dowbaj ◽  
Bernhard Strauss ◽  
Olga Sarlidou ◽  
...  

AbstractIn the homeostatic liver, ductal cells intermingle with a microenvironment of endothelial and mesenchymal cells to form the functional unit of the portal tract. Ductal cells proliferate rarely in homeostasis but do so transiently after tissue injury to replenish any lost epithelium. We have shown that liver ductal cells can be expanded as liver organoids that recapitulate several of the cell-autonomous mechanisms of regeneration, but lack the stromal cell milieu of the biliary tract in vivo. Here, we describe a subpopulation of SCA1+ periportal mesenchymal cells that closely surrounds ductal cells in vivo and exerts a dual control on their proliferative capacity. Mesenchymal-secreted mitogens support liver organoid formation and expansion from differentiated ductal cells. However, direct mesenchymal-to-ductal cell-cell contact, established following a microfluidic co-encapsulation that enables the cells to self-organize into chimeric organoid structures, abolishes ductal cell proliferation in a mesenchyme-dose dependent manner. We found that it is the ratio between mesenchymal and epithelial cell contacts that determines the net outcome of ductal cell proliferation both in vitro, and in vivo, during damage-regeneration. SCA1+ mesenchymal cells control ductal cell proliferation dynamics by a mechanism involving, at least in part, Notch signalling activation. Our findings underscore how the relative abundance of cell-cell contacts between the epithelium and its mesenchymal microenvironment are key regulatory cues involved in the control of tissue regeneration.SummaryIn the homeostatic liver, the ductal epithelium intermingles with a microenvironment of stromal cells to form the functional unit of the portal tract. Ductal cells proliferate rarely in homeostasis but do so transiently after tissue injury. We have shown that these cells can be expanded as liver organoids that recapitulate several of the cell-autonomous mechanisms of regeneration, but lack the stromal cell milieu of the portal tract in vivo. Here, we describe a subpopulation of SCA1+ periportal mesenchymal niche cells that closely surrounds ductal cells in vivo and exerts a dual control on their proliferative capacity. Mesenchymal-secreted mitogens support liver organoid formation and expansion from differentiated ductal cells. However, direct mesenchymal-to-ductal cell-cell contact, established through a microfluidic co-encapsulation method that enables the cells to self-organize into chimeric organoid structures, abolishes ductal cell proliferation in a mesenchyme-dose dependent manner. We found that it is the ratio between mesenchymal and epithelial cell contacts that determines the net outcome of ductal cell proliferation both in vitro, and in vivo, during damage-regeneration. SCA1+ mesenchymal cells control ductal cell proliferation dynamics by a mechanism involving, at least in part, Notch signalling activation. Our findings re-evaluate the concept of the cellular niche, whereby the proportions of cell-cell contacts between the epithelium and its mesenchymal niche, and not the absolute cell numbers, are the key regulatory cues involved in the control of tissue regeneration.


2015 ◽  
Vol 112 (40) ◽  
pp. E5543-E5551 ◽  
Author(s):  
Kamila Kalinowska ◽  
Marie-Kristin Nagel ◽  
Kaija Goodman ◽  
Laura Cuyas ◽  
Franziska Anzenberger ◽  
...  

Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.


2008 ◽  
Vol 417 (1) ◽  
pp. 121-132 ◽  
Author(s):  
Cecile Desjobert ◽  
Peter Noy ◽  
Tracey Swingler ◽  
Hannah  Williams ◽  
Kevin Gaston ◽  
...  

The PRH (proline-rich homeodomain) [also known as Hex (haematopoietically expressed homeobox)] protein is a transcription factor that functions as an important regulator of vertebrate development and many other processes in the adult including haematopoiesis. The Groucho/TLE (transducin-like enhancer) family of co-repressor proteins also regulate development and modulate the activity of many DNA-binding transcription factors during a range of diverse cellular processes including haematopoiesis. We have shown previously that PRH is a repressor of transcription in haematopoietic cells and that an Eh-1 (Engrailed homology) motif present within the N-terminal transcription repression domain of PRH mediates binding to Groucho/TLE proteins and enables co-repression. In the present study we demonstrate that PRH regulates the nuclear retention of TLE proteins during cellular fractionation. We show that transcriptional repression and the nuclear retention of TLE proteins requires PRH to bind to both TLE and DNA. In addition, we characterize a trans-dominant-negative PRH protein that inhibits wild-type PRH activity by sequestering TLE proteins to specific subnuclear domains. These results demonstrate that transcriptional repression by PRH is dependent on TLE availability and suggest that subnuclear localization of TLE plays an important role in transcriptional repression by PRH.


2006 ◽  
Vol 26 (6) ◽  
pp. 2247-2261 ◽  
Author(s):  
Alejandra Collazos ◽  
Barthélémy Diouf ◽  
Nathalie C. Guérineau ◽  
Corinne Quittau-Prévostel ◽  
Marion Peter ◽  
...  

ABSTRACT In pituitary GH3B6 cells, signaling involving the protein kinase C (PKC) multigene family can self-organize into a spatiotemporally coordinated cascade of isoform activation. Indeed, thyrotropin-releasing hormone (TRH) receptor activation sequentially activated green fluorescent protein (GFP)-tagged or endogenous PKCβ1, PKCα, PKCε, and PKCδ, resulting in their accumulation at the entire plasma membrane (PKCβ and -δ) or selectively at the cell-cell contacts (PKCα and -ε). The duration of activation ranged from 20 s for PKCα to 20 min for PKCε. PKCα and -ε selective localization was lost in the presence of Gö6976, suggesting that accumulation at cell-cell contacts is dependent on the activity of a conventional PKC. Constitutively active, dominant-negative PKCs and small interfering RNAs showed that PKCα localization is controlled by PKCβ1 activity and is calcium independent, while PKCε localization is dependent on PKCα activity. PKCδ was independent of the cascade linking PKCβ1, -α, and -ε. Furthermore, PKCα, but not PKCε, is involved in the TRH-induced β-catenin relocation at cell-cell contacts, suggesting that PKCε is not the unique functional effector of the cascade. Thus, TRH receptor activation results in PKCβ1 activation, which in turn initiates a calcium-independent but PKCβ1 activity-dependent sequential translocation of PKCα and -ε. These results challenge the current understanding of PKC signaling and raise the question of a functional dependence between isoforms.


2002 ◽  
Vol 13 (2) ◽  
pp. 683-697 ◽  
Author(s):  
Qize Wei ◽  
Robert S. Adelstein

We ectopically expressed the transcription factor Pitx2a, one of the Pitx2 isoforms, in HeLa cells by using a tetracycline-inducible expression system and examined whether Pitx2a was capable of modulating Rho GTPase signaling and altering the cell's cytoskeleton. Ectopic expression of Pitx2a induced actin-myosin reorganization, leading to increased cell spreading, suppression of cell migration, and the strengthening of cell-cell adhesion, marked by the accumulation and localization of β-catenin and N-cadherin to the sites of cell-cell contacts. Moreover, Pitx2a expression resulted in activation of the Rho GTPases Rac1 and RhoA, and the dominant negative Rac1 mutant N17Rac1 inhibited cell spreading and disrupted localization of β-catenin to the sites of cell-cell contacts. Both reorganization of actin-myosin and cell spreading require phosphatidylinositol 3-kinase activity, which is also necessary for activation of the Rho GTPase proteins. Pitx2a induced the expression of Trio, a guanine nucleotide exchange factor for Rac1 and RhoA, which preceded cell spreading, and the expression of Trio protein was down-regulated after the changes in cell spreading and cell morphology were initiated. In addition, Pitx2a also induces cell cycle arrest at G0/G1, most likely due to the accumulation of the tumor suppressor proteins p53 and p21. Our data indicate that the transcriptional activities initiated in the nucleus by Pitx2a result in profound changes in HeLa cell morphology, migration, and proliferation.


2003 ◽  
Vol 92 (12) ◽  
pp. 1314-1321 ◽  
Author(s):  
Elizabeth B. Uglow ◽  
Sadie Slater ◽  
Graciela B. Sala-Newby ◽  
Concepción M. Aguilera-Garcia ◽  
Gianni D. Angelini ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jose Miguel Perez-Tejeiro ◽  
Fabiana Csukasi

Discovered in 2009, the DEP-domain containing mTOR-interacting protein, DEPTOR, is a known regulator of the mechanistic target of rapamycin (mTOR), an evolutionarily conserved kinase that regulates diverse cellular processes in response to environmental stimuli. DEPTOR was originally identified as a negative regulator of mTOR complexes 1 (mTORC1) and 2 (mTORC2). However, recent discoveries have started to unravel the roles of DEPTOR in mTOR-independent responses. In the past few years, mTOR emerged as an important regulator of skeletal development, growth, and homeostasis; the dysregulation of its activity contributes to the development of several skeletal diseases, both chronic and genetic. Even more recently, several groups have reported on the relevance of DEPTOR in skeletal biology through its action on mTOR-dependent and mTOR-independent pathways. In this review, we summarize the current understanding of DEPTOR in skeletal development and disease.


2013 ◽  
Vol 24 (3) ◽  
pp. 234-245 ◽  
Author(s):  
Sophie Charrasse ◽  
Franck Comunale ◽  
Sylvain De Rossi ◽  
Arnaud Echard ◽  
Cécile Gauthier-Rouvière

Cadherins are homophilic cell–cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell–cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered. Here we identify the small GTPase Rab35 as a new regulator of cadherin trafficking and stabilization at cell–cell contacts in C2C12 myoblasts and HeLa cells. We find that Rab35 accumulates at cell–cell contacts in a cadherin-dependent manner. Knockdown of Rab35 or expression of a dominant-negative form of Rab35 impaired N- and M-cadherin recruitment to cell–cell contacts, their stabilization at the plasma membrane, and association with p120 catenin and led to their accumulation in transferrin-, clathrin-, and AP-2–positive intracellular vesicles. We also find that Rab35 function is required for PIP5KIγ accumulation at cell–cell contacts and phosphatidyl inositol 4,5-bisphosphate production, which is involved in cadherin stabilization at contact sites. Finally, we show that Rab35 regulates myoblast fusion, a major cellular process under the control of cadherin-dependent signaling. Taken together, these results reveal that Rab35 regulates cadherin-dependent AJ formation and myoblast fusion.


2009 ◽  
Vol 20 (7) ◽  
pp. 1949-1959 ◽  
Author(s):  
Koichi Miura ◽  
Jin-Min Nam ◽  
Chie Kojima ◽  
Naoki Mochizuki ◽  
Hisataka Sabe

ADP-ribosylation factor (Arf) 6 activity is crucially involved in the regulation of E-cadherin–based cell–cell adhesions. Erythropoietin-producing hepatocellular carcinoma (Eph)-family receptors recognize ligands, namely, ephrins, anchored to the membrane of apposing cells, and they mediate cell–cell contact-dependent events. Here, we found that Arf6 activity is down-regulated in Madin-Darby canine kidney cells, which is dependent on cell density and calcium ion concentration, and we provide evidence of a novel signaling pathway by which ligand-activated EphA2 suppresses Arf6 activity. This EphA2-mediated suppression of Arf6 activity was linked to the induction of cell compaction and polarization, but it was independent of the down-regulation of extracellular signal-regulated kinase 1/2 kinase activity. We show that G protein-coupled receptor kinase-interacting protein (Git) 1 and noncatalytic region of tyrosine kinase (Nck) 1 are involved in this pathway, in which ligand-activated EphA2, via its phosphorylated Tyr594, binds to the Src homology 2 domain of Nck1, and then via its Src homology 3 domain binds to the synaptic localizing domain of Git1 to suppress Arf6 activity. We propose a positive feedback loop in which E-cadherin–based cell–cell contacts enhance EphA-ephrinA signaling, which in turn down-regulates Arf6 activity to enhance E-cadherin–based cell–cell contacts as well as the apical-basal polarization of epithelial cells.


2011 ◽  
Vol 195 (2) ◽  
pp. 245-261 ◽  
Author(s):  
Hiroyuki Nakajima ◽  
Takuji Tanoue

Myosin II–driven mechanical forces control epithelial cell shape and morphogenesis. In particular, the circumferential actomyosin belt, which is located along apical cell–cell junctions, regulates many cellular processes. Despite its importance, the molecular mechanisms regulating the belt are not fully understood. In this paper, we characterize Lulu2, a FERM (4.1 protein, ezrin, radixin, moesin) domain–containing molecule homologous to Drosophila melanogaster Yurt, as an important regulator. In epithelial cells, Lulu2 is localized along apical cell–cell boundaries, and Lulu2 depletion by ribonucleic acid interference results in disorganization of the circumferential actomyosin belt. In its regulation of the belt, Lulu2 interacts with and activates p114RhoGEF, a Rho-specific guanine nucleotide exchanging factor (GEF), at apical cell–cell junctions. This interaction is negatively regulated via phosphorylation events in the FERM-adjacent domain of Lulu2 catalyzed by atypical protein kinase C. We further found that Patj, an apical cell polarity regulator, recruits p114RhoGEF to apical cell–cell boundaries via PDZ (PSD-95/Dlg/ZO-1) domain–mediated interaction. These findings therefore reveal a novel molecular system regulating the circumferential actomyosin belt in epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document