scholarly journals Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling

2011 ◽  
Vol 22 (3) ◽  
pp. 354-374 ◽  
Author(s):  
Nan Lu ◽  
Qian Shen ◽  
Timothy R. Mahoney ◽  
Xianghua Liu ◽  
Zheng Zhou

Apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Phagosome maturation requires phosphatidylinositol 3-phosphate [PtdIns(3)P], yet how PtdIns(3)P triggers phagosome maturation remains largely unknown. Through a genome-wide PtdIns(3)P effector screen in the nematode Caenorhabditis elegans, we identified LST-4/SNX9, SNX-1, and SNX-6, three BAR domain-containing sorting nexins, that act in two parallel pathways to drive PtdIns(3)P-mediated degradation of apoptotic cells. We found that these proteins were enriched on phagosomal surfaces through association with PtdIns(3)P and through specific protein–protein interaction, and they promoted the fusion of early endosomes and lysosomes to phagosomes, events essential for phagosome maturation. Specifically, LST-4 interacts with DYN-1 (dynamin), an essential phagosome maturation initiator, to strengthen DYN-1’s association to phagosomal surfaces, and facilitates the maintenance of the RAB-7 GTPase on phagosomal surfaces. Furthermore, both LST-4 and SNX-1 promote the extension of phagosomal tubules to facilitate the docking and fusion of intracellular vesicles. Our findings identify the critical and differential functions of two groups of sorting nexins in phagosome maturation and reveal a signaling cascade initiated by phagocytic receptor CED-1, mediated by PtdIns(3)P, and executed through these sorting nexins to degrade apoptotic cells.

2021 ◽  
Author(s):  
Omar Pena-Ramos ◽  
Lucia Chiao ◽  
Xianghua Liu ◽  
Tianyou Yao ◽  
Henry He ◽  
...  

Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. In the nematode Caenorhabditis elegans, 113 somatic cells undergo apoptosis during embryogenesis and are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells in C. elegans embryos using a real-time imaging technique. Specifically, double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner membrane to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant delays in the degradation of apoptotic cells, demonstrating the important contribution of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, CED-1s adaptor CED-6, and the large GTPase dynamin (DYN-1) promote the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex. Our findings reveal that, unlike the single-membrane, LC3- associated phagocytosis (LAP) vesicles reported for mammalian phagocytes, canonical autophagosomes function in the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream factors that initiate this crosstalk.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sonal Singh ◽  
Caitrin W. McDonough ◽  
Yan Gong ◽  
Kent R. Bailey ◽  
Eric Boerwinkle ◽  
...  

AbstractChlorthalidone (CTD) is more potent than hydrochlorothiazide (HCTZ) in reducing blood pressure (BP) in hypertensive patients, though both are plagued with BP response variability. However, there is a void in the literature regarding the genetic determinants contributing to the variability observed in BP response to CTD. We performed a discovery genome wide association analysis of BP response post CTD treatment in African Americans (AA) and European Americans (EA) from the Pharmacogenomic Evaluation of Antihypertensive Responses-2 (PEAR-2) study and replication in an independent cohort of AA and EA treated with HCTZ from the PEAR study, followed by a race specific meta-analysis of the two studies. Successfully replicated SNPs were further validated in beta-blocker treated participants from PEAR-2 and PEAR for opposite direction of association. The replicated and validated signals were further evaluated by protein-protein interaction network analysis. An intronic SNP rs79237970 in the WDR92 (eQTL for PPP3R1) was significantly associated with better DBP response to CTD (p = 5.76 × 10−6, β = −15.75) in the AA cohort. This SNP further replicated in PEAR (p = 0.00046, β = −9.815) with a genome wide significant meta-analysis p-value of 8.49 × 10−9. This variant was further validated for opposite association in two β-blockers treated cohorts from PEAR-2 metoprolol (p = 9.9 × 10−3, β = 7.47) and PEAR atenolol (p = 0.04, β = 4.36) for association with DBP. Studies have implicated WDR92 in coronary artery damage. PPP3R1 is the regulatory subunit of the calcineurin complex. Use of calcineurin inhibitors is associated with HTN. Studies have also shown polymorphisms in PPP3R1 to be associated with ventricular hypertrophy in AA hypertensive patients. Protein-protein interaction analysis further identified important hypertension related pathways such as inositol phosphate-mediated signaling and calcineurin-NFAT signaling cascade as important biological process associated with PPP3R1 which further strengthen the potential importance of this signal. These data collectively suggest that WDR92 and PPP3R1 are novel candidates that may help explain the genetic underpinnings of BP response of thiazide and thiazide-like diuretics and help identify the patients better suited for thiazide and thiazide-like diuretics compared to β-blockers for improved BP management. This may further help advance personalized approaches to antihypertensive therapy.


2021 ◽  
Author(s):  
Ho-Joon Lee

The COVID-19 disease has been a global threat caused by the new coronavirus species, SARS-CoV-2, since early 2020 with an urgent need for therapeutic interventions. In order to provide insight into human proteins targeted by SARS-CoV-2, here we study a directed human protein-protein interaction network (dhPPIN) based on our previous work on network controllability of virus targets. We previously showed that human proteins targeted by viruses tend to be those whose removal in a dhPPIN requires more control of the network dynamics, which were classified as indispensable nodes. In this study we introduce a more comprehensive rank-based enrichment analysis of our previous dhPPIN for SARS-CoV-2 infection and show that SARS-CoV-2 also tends to target indispensable nodes in the dhPPIN using multiple proteomics datasets, supporting validity and generality of controllability analysis of viral infection in humans. Also, we find differential controllability among SARS-CoV-2, SARS-CoV-1, and MERS-CoV from a comparative proteomics study. Moreover, we show functional significance of indispensable nodes by analyzing heterogeneous datasets from a genome-wide CRISPR screening study, a time-course phosphoproteomics study, and a genome-wide association study. Specifically, we identify SARS-CoV-2 ORF3A as most frequently interacting with indispensable proteins in the dhPPIN, which are enriched in TGF-beta signaling and tend to be sources nodes and interact with each other. Finally, we built an integrated network model of ORF3A-interacting indispensable proteins with multiple functional supports to provide hypotheses for experimental validation as well as therapeutic opportunities. Therefore, a sub-network of indispensable proteins targeted by SARS-CoV-2 could serve as a prioritized network of drug targets and a basis for further functional and mechanistic studies from a network controllability perspective.


2018 ◽  
Author(s):  
Ryan C. Haley ◽  
Ying Wang ◽  
Zheng Zhou

AbstractIn metazoans, apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Multiple small GTPases in the Rab family are known to function in phagosome maturation by regulating vesicle trafficking. We discovered rab-35 as a new gene important for apoptotic cell clearance using an RNAi screen targeting putative Rab GTPases in Caenorhabditis elegans. We further identified TBC-10 as a putative GTPase-activating protein (GAP), and FLCN-1 and RME-4 as two putative Guanine Nucleotide Exchange Factors (GEFs), for RAB-35. RAB-35 function was found to be required for the incorporation of early endosomes to phagosomes and for the timely degradation of apoptotic cell corpses. More specifically, RAB-35 facilitates the switch of phagosomal membrane phosphatidylinositol species from PtdIns(4,5)P2 to PtdIns(3)P and promotes the recruitment of the small GTPase RAB-5 to phagosomal surfaces, processes that are essential for phagosome maturation. Interestingly, we observed that CED-1 performs these same functions, and to a much larger extent than RAB-35. Remarkably, in addition to cell corpse degradation, RAB-35 also facilitates the recognition of cell corpses independently of the CED-1 and CED-5 pathways. RAB-35 localizes to extending pseudopods and is further enriched on nascent phagosomes, consistent with its dual roles in regulating cell corpse-recognition and phagosome maturation. Epistasis analyses indicate that rab-35 represents a novel third genetic pathway that acts in parallel to both of the canonical ced-1/6/7 and ced-2/5/10/12 engulfment pathways. We propose that RAB-35 acts as a robustness factor, leading a pathway that aids the canonical pathways for the engulfment and degradation of apoptotic cells.


2011 ◽  
Vol 43 (14) ◽  
pp. 855-872 ◽  
Author(s):  
Ajit N. Shah ◽  
Daniela Cadinu ◽  
R. Michael Henke ◽  
Xiantong Xin ◽  
Ranita Ghosh Dastidar ◽  
...  

Hypoxia is a widely occurring condition experienced by diverse organisms under numerous physiological and disease conditions. To probe the molecular mechanisms underlying hypoxia responses and tolerance, we performed a genome-wide screen to identify mutants with enhanced hypoxia tolerance in the model eukaryote, the yeast Saccharomyces cerevisiae . Yeast provides an excellent model for genomic and proteomic studies of hypoxia. We identified five genes whose deletion significantly enhanced hypoxia tolerance. They are RAI1, NSR1, BUD21, RPL20A, and RSM22, all of which encode functions involved in ribosome biogenesis. Further analysis of the deletion mutants showed that they minimized hypoxia-induced changes in polyribosome profiles and protein synthesis. Strikingly, proteomic analysis by using the iTRAQ profiling technology showed that a substantially fewer number of proteins were changed in response to hypoxia in the deletion mutants, compared with the parent strain. Computational analysis of the iTRAQ data indicated that the activities of a group of regulators were regulated by hypoxia in the wild-type parent cells, but such regulation appeared to be diminished in the deletion strains. These results show that the deletion of one of the genes involved in ribosome biogenesis leads to the reversal of hypoxia-induced changes in gene expression and related regulators. They suggest that modifying ribosomal function is an effective mechanism to minimize hypoxia-induced specific protein changes and to confer hypoxia tolerance. These results may have broad implications in understanding hypoxia responses and tolerance in diverse eukaryotes ranging from yeast to humans.


2006 ◽  
Vol 75 (2) ◽  
pp. 581-591 ◽  
Author(s):  
Nirmal Robinson ◽  
Martina Wolke ◽  
Karen Ernestus ◽  
Georg Plum

ABSTRACT Virulent mycobacteria cause arrest of phagosome maturation as a part of their survival strategy in hosts. This process is mediated through multiple virulence factors, whose molecular nature remains elusive. Using Mycobacterium marinum as a model, we performed a genome-wide screen to identify mutants whose ability to inhibit phagosome maturation was impaired, and we succeeded in isolating a comprehensive set of mutants that were not able to occupy an early endosome-like phagosomal compartment in mammalian macrophages. Categorizing and ordering the multiple mutations according to their gene families demonstrated that the genes modulating the cell envelope are the principal factors in arresting phagosome maturation. In particular, we identified a novel gene, pmiA, which is capable of influencing the constitution of the cell envelope lipids, thereby leading to the phagosome maturation block. The pmiA mutant was not able to resist phagosome maturation and was severely attenuated in mice. Complementing the mutant with the wild-type gene restored the attenuated virulence to wild-type levels in mice.


2020 ◽  
Vol 37 (6) ◽  
pp. 1604-1614 ◽  
Author(s):  
Russell B Corbett-Detig ◽  
Shelbi L Russell ◽  
Rasmus Nielsen ◽  
Jonathan Losos

Abstract There are many compelling examples of molecular convergence at individual genes. However, the prevalence and the relative importance of adaptive genome-wide convergence remain largely unknown. Many recent works have reported striking examples of excess genome-wide convergence, but some of these studies have been called into question because of the use of inappropriate null models. Here, we sequenced and compared the genomes of 12 species of anole lizards that have independently converged on suites of adaptive behavioral and morphological traits. Despite extensive searches for a genome-wide signature of molecular convergence, we found no evidence supporting molecular convergence at specific amino acids either at individual genes or at genome-wide comparisons; we also uncovered no evidence supporting an excess of adaptive convergence in the rates of amino acid substitutions within genes. Our findings indicate that comprehensive phenotypic convergence is not mirrored at genome-wide protein-coding levels in anoles, and therefore, that adaptive phenotypic convergence is likely not constrained by the evolution of many specific protein sequences or structures.


2014 ◽  
Vol 25 (14) ◽  
pp. 2181-2189 ◽  
Author(s):  
Xuanli Yao ◽  
Xiangfeng Wang ◽  
Xin Xiang

The minus end–directed microtubule motor cytoplasmic dynein transports various cellular cargoes, including early endosomes, but how dynein binds to its cargo remains unclear. Recently fungal Hook homologues were found to link dynein to early endosomes for their transport. Here we identified FhipA in Aspergillus nidulans as a key player for HookA (A. nidulans Hook) function via a genome-wide screen for mutants defective in early-endosome distribution. The human homologue of FhipA, FHIP, is a protein in the previously discovered FTS/Hook/FHIP (FHF) complex, which contains, besides FHIP and Hook proteins, Fused Toes (FTS). Although this complex was not previously shown to be involved in dynein-mediated transport, we show here that loss of either FhipA or FtsA (A. nidulans FTS homologue) disrupts HookA–early endosome association and inhibits early endosome movement. Both FhipA and FtsA associate with early endosomes, and interestingly, while FtsA–early endosome association requires FhipA and HookA, FhipA–early endosome association is independent of HookA and FtsA. Thus FhipA is more directly linked to early endosomes than HookA and FtsA. However, in the absence of HookA or FtsA, FhipA protein level is significantly reduced. Our results indicate that all three proteins in the FtsA/HookA/FhipA complex are important for dynein-mediated early endosome movement.


2016 ◽  
Vol 113 (5) ◽  
pp. 1399-1404 ◽  
Author(s):  
Jim Baggen ◽  
Hendrik Jan Thibaut ◽  
Jacqueline Staring ◽  
Lucas T. Jae ◽  
Yue Liu ◽  
...  

Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory disease and is associated with cases of paralysis, especially among children. Heretofore, information on host factor requirements for EV-D68 infection is scarce. Haploid genetic screening is a powerful tool to reveal factors involved in the entry of pathogens. We performed a genome-wide haploid screen with the EV-D68 prototype Fermon strain to obtain a comprehensive overview of cellular factors supporting EV-D68 infection. We identified and confirmed several genes involved in sialic acid (Sia) biosynthesis, transport, and conjugation to be essential for infection. Moreover, by using knockout cell lines and gene reconstitution, we showed that both α2,6- and α2,3-linked Sia can be used as functional cellular EV-D68 receptors. Importantly, the screen did not reveal a specific protein receptor, suggesting that EV-D68 can use multiple redundant sialylated receptors. Upon testing recent clinical strains, we identified strains that showed a similar Sia dependency, whereas others could infect cells lacking surface Sia, indicating they can use an alternative, nonsialylated receptor. Nevertheless, these Sia-independent strains were still able to bind Sia on human erythrocytes, raising the possibility that these viruses can use multiple receptors. Sequence comparison of Sia-dependent and Sia-independent EV-D68 strains showed that many changes occurred near the canyon that might allow alternative receptor binding. Collectively, our findings provide insights into the identity of the EV-D68 receptor and suggest the possible existence of Sia-independent viruses, which are essential for understanding tropism and disease.


Sign in / Sign up

Export Citation Format

Share Document