scholarly journals Phosphorylation of Serine 114 on Atg32 mediates mitophagy

2011 ◽  
Vol 22 (17) ◽  
pp. 3206-3217 ◽  
Author(s):  
Yoshimasa Aoki ◽  
Tomotake Kanki ◽  
Yuko Hirota ◽  
Yusuke Kurihara ◽  
Tetsu Saigusa ◽  
...  

Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11–Atg32 interaction is believed to be the initial molecular step in which the autophagic machinery recognizes mitochondria as a cargo, although how this interaction is mediated is poorly understood. Therefore, we studied the Atg11–Atg32 interaction in detail. We found that the C-terminus region of Atg11, which included the fourth coiled-coil domain, interacted with the N-terminus region of Atg32 (residues 100–120). When mitophagy was induced, Ser-114 and Ser-119 on Atg32 were phosphorylated, and then the phosphorylation of Atg32, especially phosphorylation of Ser-114 on Atg32, mediated the Atg11–Atg32 interaction and mitophagy. These findings suggest that cells can regulate the amount of mitochondria, or select specific mitochondria (damaged or aged) that are degraded by mitophagy, by controlling the activity and/or localization of the kinase that phosphorylates Atg32. We also found that Hog1 and Pbs2, which are involved in the osmoregulatory signal transduction cascade, are related to Atg32 phosphorylation and mitophagy.

2008 ◽  
Vol 411 (2) ◽  
pp. 407-414 ◽  
Author(s):  
Ritu Garg ◽  
Kirsi Riento ◽  
Nicholas Keep ◽  
Jonathan D. H. Morris ◽  
Anne J. Ridley

ROCK-I (Rho-associated kinase 1) is a serine/threonine kinase that can be activated by RhoA and inhibited by RhoE. ROCK-I has an N-terminal kinase domain, a central coiled-coil region and a RhoA-binding domain near the C-terminus. We have previously shown that RhoE binds to the N-terminal 420 amino acids of ROCK-I, which includes the kinase domain as well as N-terminal and C-terminal extensions. In the present study, we show that N-terminus-mediated dimerization of ROCK-I is required for RhoE binding. The central coiled-coil domain can also dimerize ROCK-I in cells, but this is insufficient in the absence of the N-terminus to allow RhoE binding. The kinase activity of ROCK-I1–420 is required for dimerization and RhoE binding; however, inclusion of part of the coiled-coil domain compensates for lack of kinase activity, allowing RhoE to bind. N-terminus-mediated dimerization is also required for ROCK-I to induce the formation of stellate actin stress fibres in cells. These results indicate that dimerization via the N-terminus is critical for ROCK-I function in cells and for its regulation by RhoE.


2008 ◽  
Vol 412 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Ko Momotani ◽  
Alexander S. Khromov ◽  
Tsuyoshi Miyake ◽  
P. Todd Stukenberg ◽  
Avril V. Somlyo

The present study demonstrates different functional domains of a recently described centrosomal protein, Cep57 (centrosomal protein 57). Endogenous Cep57 protein and ectopic expression of full-length protein or the N-terminal coiled-coil domain localize to the centrosome internal to γ-tubulin, suggesting that it is either on both centrioles or on a centromatrix component. The N-terminus can also multimerize with the N-terminus of other Cep57 molecules. The C-terminus contains a second coiled-coil domain that directly binds to MTs (microtubules). This domain both nucleates and bundles MTs in vitro. This activity was also seen in vivo, as overexpression of full-length Cep57 or the C-terminus generates nocodazole-resistant MT cables in cells. Based on the present findings, we propose that Cep57 serves as a link with its N-terminus anchored to the centriole or centromatrix and its C-terminus to MTs.


Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2055-2068 ◽  
Author(s):  
Daniel V. Zurawski ◽  
Murry A. Stein

SseA, a key Salmonella virulence determinant, is a small, basic pI protein encoded within the Salmonella pathogenicity island 2 and serves as a type III secretion system chaperone for SseB and SseD. Both SseA partners are subunits of the surface-localized translocon module that delivers effectors into the host cell; SseB is predicted to compose the translocon sheath and SseD is a putative translocon pore subunit. In this study, SseA molecular interactions with its partners were characterized further. Yeast two-hybrid screens indicate that SseA binding requires a C-terminal domain within both partners. An additional central domain within SseD was found to influence binding. The SseA-binding region within SseB was found to encompass a predicted amphipathic helix of a type participating in coiled-coil interactions that are implicated in the assembly of translocon sheaths. Deletions that impinge upon this putative coiled-coiled domain prevent SseA binding, suggesting that SseA occupies a portion of the coiled-coil. SseA occupancy of this motif is envisioned to be sufficient to prevent premature SseB self-association inside bacteria. Domain mapping on the chaperone was also performed. A deletion of the SseA N-terminus, or site-directed mutations within this region, allowed stabilization of SseB, but its export was disrupted. Therefore, the N-terminus of SseA provides a function that is essential for SseB export, but dispensable for partner binding and stabilization.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Lok-To Sham ◽  
Katelyn R. Jensen ◽  
Kevin E. Bruce ◽  
Malcolm E. Winkler

ABSTRACT The FtsEX protein complex has recently been proposed to play a major role in coordinating peptidoglycan (PG) remodeling by hydrolases with the division of bacterial cells. According to this model, cytoplasmic FtsE ATPase interacts with the FtsZ divisome and FtsX integral membrane protein and powers allosteric activation of an extracellular hydrolase interacting with FtsX. In the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus), a large extracellular-loop domain of FtsX (ECL1FtsX) is thought to interact with the coiled-coil domain of the PcsB protein, which likely functions as a PG amidase or endopeptidase required for normal cell division. This paper provides evidence for two key tenets of this model. First, we show that FtsE protein is essential, that depletion of FtsE phenocopies cell defects caused by depletion of FtsX or PcsB, and that changes of conserved amino acids in the FtsE ATPase active site are not tolerated. Second, we show that temperature-sensitive (Ts) pcsB mutations resulting in amino acid changes in the PcsB coiled-coil domain (CCPcsB) are suppressed by ftsX mutations resulting in amino acid changes in the distal part of ECL1FtsX or in a second, small extracellular-loop domain (ECL2FtsX). Some FtsX suppressors are allele specific for changes in CCPcsB, and no FtsX suppressors were found for amino acid changes in the catalytic PcsB CHAP domain (CHAPPcsB). These results strongly support roles for both ECL1FtsX and ECL2FtsX in signal transduction to the coiled-coil domain of PcsB. Finally, we found that pcsB CC(Ts) mutants (Ts mutants carrying mutations in the region of pcsB corresponding to the coiled-coil domain) unexpectedly exhibit delayed stationary-phase autolysis at a permissive growth temperature. IMPORTANCE Little is known about how FtsX interacts with cognate PG hydrolases in any bacterium, besides that ECL1FtsX domains somehow interact with coiled-coil domains. This work used powerful genetic approaches to implicate a specific region of pneumococcal ECL1FtsX and the small ECL2FtsX in the interaction with CCPcsB. These findings identify amino acids important for in vivo signal transduction between FtsX and PcsB for the first time. This paper also supports the central hypothesis that signal transduction between pneumococcal FtsX and PcsB is linked to ATP hydrolysis by essential FtsE, which couples PG hydrolysis to cell division. The classical genetic approaches used here can be applied to dissect interactions of other integral membrane proteins involved in PG biosynthesis. Finally, delayed autolysis of the pcsB CC(Ts) mutants suggests that the FtsEX-PcsB PG hydrolase may generate a signal in the PG necessary for activation of the major LytA autolysin as pneumococcal cells enter stationary phase.


2012 ◽  
Vol 23 (17) ◽  
pp. 3391-3406 ◽  
Author(s):  
Rebecca A. Meseroll ◽  
Louisa Howard ◽  
Amy S. Gladfelter

Septins are conserved GTP-binding proteins that assemble into heteromeric complexes that form filaments and higher-order structures in cells. What directs filament assembly, determines the size of higher-order septin structures, and governs septin dynamics is still not well understood. We previously identified two kinases essential for septin ring assembly in the filamentous fungus Ashbya gossypii and demonstrate here that the septin Shs1p is multiphosphorylated at the C-terminus of the protein near the predicted coiled-coil domain. Expression of the nonphosphorylatable allele shs1-9A does not mimic the loss of the kinase nor does complete truncation of the Shs1p C-terminus. Surprisingly, however, loss of the C-terminus or the predicted coiled-coil domain of Shs1p generates expanded zones of septin assemblies and ectopic septin fibers, as well as aberrant cell morphology. The expanded structures form coincident with ring assembly and are heteromeric. Interestingly, while septin recruitment to convex membranes is increased, septin localization is diminished at concave membranes in these mutants. Additionally, the loss of the coiled-coil leads to increased mobility of Shs1p. These data indicate the coiled-coil of Shs1p is an important negative regulator of septin ring size and mobility, and its absence may make septin assembly sensitive to local membrane curvature.


Oncogene ◽  
1998 ◽  
Vol 16 (6) ◽  
pp. 809-816 ◽  
Author(s):  
Angela Greco ◽  
Lisa Fusetti ◽  
Claudia Miranda ◽  
Riccardo Villa ◽  
Simona Zanotti ◽  
...  

2015 ◽  
Vol 26 (8) ◽  
pp. 1491-1508 ◽  
Author(s):  
Robin Beaven ◽  
Nikola S. Dzhindzhev ◽  
Yue Qu ◽  
Ines Hahn ◽  
Federico Dajas-Bailador ◽  
...  

Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.


1991 ◽  
Vol 99 (4) ◽  
pp. 823-836
Author(s):  
S.J. Atkinson ◽  
M. Stewart

We have expressed in Escherichia coli a cDNA clone corresponding broadly to rabbit light meromyosin (LMM) together with a number of modified polypeptides and have used this material to investigate the role of different aspects of molecular structure on the solubility properties of LMM. The expressed material was characterized biochemically and structurally to ensure that it retained the coiled-coil conformation of the native molecule. Full-length recombinant LMM retained the general solubility properties of myosin and, although soluble at high ionic strength, precipitated when the ionic strength was reduced below 0.3 M. Constructs in which the ‘skip’ residues (that disrupt the coiled-coil heptad repeat) were deleted had solubility properties indistinguishable from the wild type, which indicated that the skip residues did not play a major role in determining the molecular interactions involved in assembly. Deletions from the N terminus of LMM did not alter the solubility properties of the expressed material, but deletion of 92 residues from the C terminus caused a large increase in solubility at low ionic strength, indicating that a determinant important for interaction between LMM molecules was located in this region. The failure of deletions from the molecule's N terminus to alter its solubility radically suggested that the periodic variation of charge along the myosin rod may not be as important as proposed for determining the strength of binding between molecules and thus the solubility of myosin.


2000 ◽  
Vol 113 (11) ◽  
pp. 1883-1889 ◽  
Author(s):  
S.Y. Lee ◽  
B. Pohajdak

B2-1 (cytohesin-1) is a member of a group of proteins (including ARNO and ARNO3) that are all of similar size and domain composition. The three proteins contain an N-terminal coiled-coil domain, followed by a Sec7 and a pleckstrin homology (PH) domain. While it is well established that the Sec7 domain functions as a guanine nucleotide exchange factor (GEF) for ADP-ribosylation factors (ARFs) and the PH domain anchors the proteins to membrane phosphoinositols, the function of the N-terminal domain is unknown. Here we show that the N terminus of B2-1 (residues 1–54) is necessary and sufficient to target the protein to the Golgi. The Sec7+PH domains of B2-1 (residues 55–398) are not sufficient for Golgi localization. Further deletion analysis and point mutagenesis indicate that the coiled-coil domain within the N terminus is responsible for Golgi targeting. Furthermore, ARNO and ARNO3 N termini also have the same capability of targeting to the Golgi. We conclude that the N-terminal, (α)-helical, coiled-coil domain is used to target this family of proteins to the Golgi complex.


2006 ◽  
Vol 26 (5) ◽  
pp. 1743-1753 ◽  
Author(s):  
Inês Chaves ◽  
Kazuhiro Yagita ◽  
Sander Barnhoorn ◽  
Hitoshi Okamura ◽  
Gijsbertus T. J. van der Horst ◽  
...  

ABSTRACT Cryptochromes (CRYs) are composed of a core domain with structural similarity to photolyase and a distinguishing C-terminal extension. While plant and fly CRYs act as circadian photoreceptors, using the C terminus for light signaling, mammalian CRY1 and CRY2 are integral components of the circadian oscillator. However, the function of their C terminus remains to be resolved. Here, we show that the C-terminal extension of mCRY1 harbors a nuclear localization signal and a putative coiled-coil domain that drive nuclear localization via two independent mechanisms and shift the equilibrium of shuttling mammalian CRY1 (mCRY1)/mammalian PER2 (mPER2) complexes towards the nucleus. Importantly, deletion of the complete C terminus prevents mCRY1 from repressing CLOCK/BMAL1-mediated transcription, whereas a plant photolyase gains this key clock function upon fusion to the last 100 amino acids of the mCRY1 core and its C terminus. Thus, the acquirement of different (species-specific) C termini during evolution not only functionally separated cryptochromes from photolyase but also caused diversity within the cryptochrome family.


Sign in / Sign up

Export Citation Format

Share Document