scholarly journals N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates

2013 ◽  
Vol 24 (7) ◽  
pp. 890-900 ◽  
Author(s):  
Dimitrios Zattas ◽  
David J. Adle ◽  
Eric M. Rubenstein ◽  
Mark Hochstrasser

Two conserved ubiquitin ligases, Hrd1 and Doa10, mediate most endoplasmic reticulum–associated protein degradation (ERAD) in yeast. Degradation signals (degrons) recognized by these ubiquitin ligases remain poorly characterized. Doa10 recognizes the Deg1 degron from the MATα2 transcription factor. We previously found that deletion of the gene (NAT3) encoding the catalytic subunit of the NatB N-terminal acetyltransferase weakly stabilized a Deg1-fusion protein. By contrast, a recent analysis of several MATα2 derivatives suggested that N-terminal acetylation of these proteins by NatB was crucial for recognition by Doa10. We now analyze endogenous MATα2 degradation in cells lacking NatB and observe minimal perturbation relative to wild-type cells. However, NatB mutation strongly impairs degradation of ER-luminal Hrd1 substrates. This unexpected defect derives from a failure of Der1, a Hrd1 complex subunit, to be N-terminally acetylated in NatB mutant yeast. We retargeted Der1 to another acetyltransferase to show that it is the only ERAD factor requiring N-terminal acetylation. Preventing Der1 acetylation stimulates its proteolysis via the Hrd1 pathway, at least partially accounting for the ERAD defect observed in the absence of NatB. These results reveal an important role for N-terminal acetylation in controlling Hrd1 ligase activity toward a specific class of ERAD substrates.

2006 ◽  
Vol 399 (3) ◽  
pp. 373-385 ◽  
Author(s):  
Yiguo Zhang ◽  
Dorothy H. Crouch ◽  
Masayuki Yamamoto ◽  
John D. Hayes

Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) and Nrf2 regulate ARE (antioxidant response element)-driven genes. At its N-terminal end, Nrf1 contains 155 additional amino acids that are absent from Nrf2. This 155-amino-acid polypeptide includes the N-terminal domain (NTD, amino acids 1–124) and a region (amino acids 125–155) that is part of acidic domain 1 (amino acids 125–295). Within acidic domain 1, residues 156–242 share 43% identity with the Neh2 (Nrf2-ECH homology 2) degron of Nrf2 that serves to destabilize this latter transcription factor through an interaction with Keap1 (Kelch-like ECH-associated protein 1). We have examined the function of the 155-amino-acid N-terminal polypeptide in Nrf1, along with its adjacent Neh2-like subdomain. Activation of ARE-driven genes by Nrf1 was negatively controlled by the NTD (N-terminal domain) through its ability to direct Nrf1 to the endoplasmic reticulum. Ectopic expression of wild-type Nrf1 and mutants lacking either the NTD or portions of its Neh2-like subdomain into wild-type and mutant mouse embryonic fibroblasts indicated that Keap1 controls neither the activity of Nrf1 nor its subcellular distribution. Immunocytochemistry showed that whereas Nrf1 gave primarily cytoplasmic staining that was co-incident with that of an endoplasmic-reticulum marker, Nrf2 gave primarily nuclear staining. Attachment of the NTD from Nrf1 to the N-terminus of Nrf2 produced a fusion protein that was redirected from the nucleus to the endoplasmic reticulum. Although this NTD–Nrf2 fusion protein exhibited less transactivation activity than wild-type Nrf2, it was nevertheless still negatively regulated by Keap1. Thus Nrf1 and Nrf2 are targeted to different subcellular compartments and are negatively regulated by distinct mechanisms.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1015
Author(s):  
Utsa Bhaduri ◽  
Giuseppe Merla

Ubiquitination is a post-translational modification that has pivotal roles in protein degradation and diversified cellular processes, and for more than two decades it has been a subject of interest in the biotech or biopharmaceutical industry. Tripartite motif (TRIM) family proteins are known to have proven E3 ubiquitin ligase activities and are involved in a multitude of cellular and physiological events and pathophysiological conditions ranging from cancers to rare genetic disorders. Although in recent years many kinds of E3 ubiquitin ligases have emerged as the preferred choices of big pharma and biotech startups in the context of protein degradation and disease biology, from a surface overview it appears that TRIM E3 ubiquitin ligases are not very well recognized yet in the realm of drug discovery. This article will review some of the blockbuster scientific discoveries and technological innovations from the world of ubiquitination and E3 ubiquitin ligases that have impacted the biopharma community, from biotech colossuses to startups, and will attempt to evaluate the future of TRIM family proteins in the province of E3 ubiquitin ligase-based drug discovery.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2970-2970
Author(s):  
Masashi Sanada ◽  
Takahiro Suzuki ◽  
Lee-Yung Shih ◽  
Makoto Otsu ◽  
Motohiro Kato ◽  
...  

Abstract Abstract 2970 Poster Board II-946 Acquired uniparental disomy (aUPD) is a common feature of myeloid neoplasms, especially myelodysplastic syndromes (MDS) / myeloploriferative neoplasms (MPN). aUPDs preferentially affected several chromosomal arms in distinct subsets of patients, and frequently associated with mutated oncogenes and tumour suppressor genes. Among these, the most common aUPDs are those involving 11q, which defined a unique subset of myeloid neoplasms that were clinically characterized by frequent diagnosis of chronic myelomonocytic leukaemia (CMML) with normal karyotypes. Recently, we and other groups reported that 11qUPD are genetically defined by the presence of homozygous mutations of C-CBL. C-CBL proto-oncogene is the cellular homolog of the v-Cbl transforming gene of the Cas NS-1 murine leukemia virus. C-CBL is thought to be involved in the negative modulation of tyrosine kinase signalling, primarily through their E3 ubiquitin ligase activity that is responsible for the down-regulation of activated tyrosine kinases. As expected from the latter function, we demonstrated that wild-type C-CBL has tumour suppressor functions; c-Cbl null mice showed expanded hematopoietic progenitor pools, promoted blastic crisis induced by a bcr/abl transgene, and spontaneous development of late-onset invasive cancers in complete penetrance. On the other hand, mutated C-CBL showed clear oncogenic potential; all tested mutants strongly transformed NIH3T3 fibroblasts, and prolonged replating capacity of hematopoietic progenitors. All reported C-CBL mutations involved the linker-RING finger domains that are central to the E3 ubiquitin ligase activity. We demonstrated that mutated C-CBL not only lost their E3 ubiquitin ligase activity, but also inhibited that of wild-type C-CBL, leading to prolonged activation of a broad spectrum of tyrosine kinases after ligand stimulations in fibroblasts and hematopoietic cells. In accordance with this, c-Cbl−/− hematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines, but unexpectedly, transduction of C-CBL mutants into c-Cbl−/− HSPCs further augmented the sensitivity to a broader spectrum of cytokines, indicating the presence of gain-of-function in mutated C-CBL that is not simply mediated by inhibition of wild-type C-CBL functions. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in the c-Cbl+/+ background or by co-transduction of wild-type C-CBL, which may suggest the pathogenic importance of loss of wild-type c-Cbl alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a novel insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some of myeloid cancer subsets. Currently, further functional studies regarding the molecular mechanism of the gain-of-function are ongoing. Disclosures: Omine: Alexion: Consultancy, Research Funding.


2004 ◽  
Vol 9 (8) ◽  
pp. 695-703 ◽  
Author(s):  
I. V. Davydov ◽  
D. Woods ◽  
Y. J. Safiran ◽  
P. Oberoi ◽  
H. O. Fearnhead ◽  
...  

An assay for the autoubiquitination activity of the E3 ligaseHDM2 (Mdm2) was developed and adapted to a high-throughput format to identify inhibitors of this activity. The assay can also be used tomeasure the activity of other E3s andmay be useful in finding both inhibitors and activators of a wide range of different ubiquitin ligases.


1995 ◽  
Vol 15 (3) ◽  
pp. 1522-1535 ◽  
Author(s):  
W J Fredericks ◽  
N Galili ◽  
S Mukhopadhyay ◽  
G Rovera ◽  
J Bennicelli ◽  
...  

Alveolar rhabdomyosarcomas are pediatric solid tumors with a hallmark cytogenetic abnormality: translocation of chromosomes 2 and 13 [t(2;13) (q35;q14)]. The genes on each chromosome involved in this translocation have been identified as the transcription factor-encoding genes PAX3 and FKHR. The NH2-terminal paired box and homeodomain DNA-binding domains of PAX3 are fused in frame to COOH-terminal regions of the chromosome 13-derived FKHR gene, a novel member of the forkhead DNA-binding domain family. To determine the role of the fusion protein in transcriptional regulation and oncogenesis, we identified the PAX3-FKHR fusion protein and characterized its function(s) as a transcription factor relative to wild-type PAX3. Antisera specific to PAX3 and FKHR were developed and used to examine PAX3 and PAX3-FKHR expression in tumor cell lines. Sequential immunoprecipitations with anti-PAX3 and anti-FKHR sera demonstrated expression of a 97-kDa PAX3-FKHR fusion protein in the t(2;13)-positive rhabdomyosarcoma Rh30 cell line and verified that a single polypeptide contains epitopes derived from each protein. The PAX3-FKHR protein was localized to the nucleus in Rh30 cells, as was wild-type PAX3, in t(2;13)-negative A673 cells. In gel shift assays using a canonical PAX binding site (e5 sequence), we found that DNA binding of PAX3-FKHR was significantly impaired relative to that of PAX3 despite the two proteins having identical PAX DNA-binding domains. However, the PAX3-FKHR fusion protein was a much more potent transcriptional activator than PAX3 as determined by transient cotransfection assays using e5-CAT reporter plasmids. The PAX3-FKHR protein may function as an oncogenic transcription factor by enhanced activation of normal PAX3 target genes.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 821-821
Author(s):  
Jonas S. Jutzi ◽  
A Gruender ◽  
Konrad Aumann ◽  
Heike L. Pahl

Abstract Background: We have described overexpression of the transcription factor NF-E2 in MPN patients and shown that elevated NF-E2 levels cause a MPN phenotype in transgenic mice. This includes thrombocytosis, leukocytosis, splenomegaly as well as an expansion of the stem- and progenitor cell compartments in the bone marrow. Recently, we have shown that, counterintuitively for a transcription factor, NF-E2 is located exclusively in the cytoplasm in the vast majority of erythroid cells in the bone marrow (85%). Patients with PMF show a statistically highly significant elevation in the proportion of cells displaying nuclear NF-E2 compared to either healthy controls or ET and PV patients. However, the molecular mechanisms regulating the subcellular localization of NF-E2 and its aberrant localization in PMF remain to be investigated. The E3 ubiquitin ligase ITCH has been postulated to stabilize and retain NF-E2 in the cytosol by protein-protein interaction and subsequent ubiquitinylation. The phenotype of ITCH deficient mice, however, has only been described briefly: animals display splenomegaly and an expansion of the stem cell compartment. The effect of ITCH deficiency on peripheral blood counts and on NF-E2 activity has not been determined. Aims: To characterize the phenotype of ITCH deficient mice and investigate the effect of ITCH deficiency on NF-E2 localization and activity. Methods: The peripheral blood and bone marrow of ITCH knock out mice as well as of heterozygous and wild-type control animals was analyzed: CBCs were determined every four weeks, stem- and progenitor populations in the bone marrow were assessed by 7-color FACS. Expression levels of NF-E2 and its targets genes were measured by quantitative PCR. Plasma cytokine concentrations were measured by Cytometric Bead Array. To determine the subcellular localization of NF-E2, immunohistochemical stainings of ITCH knock out BMs and wild-type controls were conducted. Results: At several consecutive time points ITCH knock out mice displayed a statistically significant elevation in WBC compared to heterozygous and wild-type littermates. Interestingly, both the percentage and the absolute number of eosinophils were significantly increased, some animals presenting with a drastic eosinophilia, the differential containing over 60% eosinophils. Furthermore, ITCH knock out mice display a significant decrease in platelet count, accompanied by an increase in platelet mass and volume, indicative of giant platelets. In the bone marrow ITCH deficient mice show a significant increase in the absolute number of Common Myeloid Progenitors (CMP). NF-E2 expression levels in the peripheral blood as well as in the bone marrow were highly statistically significantly increased compared to the levels measured in wild-type or heterozygous control mice. Consequently, the NF-E2 target gene Thromboxane Synthase A was statistically significantly overexpressed in peripheral blood of ITCH knock out mice. Plamsa concentrations of the inflammatory cytokines INF-γ and TNF were statistically significantly elevated, reaching two to threefold higher levels in ITCH knock out mice compared to wild-type littermates. Lastly, NF-E2 subcellular localization was altered in ITCH deficient mice, which display a significant increase in the proportion of megakaryocytes positive for nuclear NF-E2. Summary/Conclusions: Our data identify the E3 ubiquitin ligase ITCH as a regulator of NF-E2 activity. Impaired ITCH activity leads to both an NF-E2 overexpression and an increased nuclear NF-E2 localization that together drive overexpression of NF-E2 target genes. Furthermore, ITCH deficiency leads to higher inflammatory cytokine levels, comparable to those seen in PMF patients. All of these factors contribute to the resulting myeloproliferative phenotype with eosinophilia. Our data provide the first pathophysiological explanation of the pathognomonic symptom of ITCH deletion: pruritus in "itchy" mice. Moreover, given the aberrant NF-E2 localization in PMF patients, our data provide a possible mechanism and underscore the role of elevated NF-E2 activity in the pathophysiology of myeloproliferative neoplasms. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 125 (7) ◽  
pp. 1727-1737 ◽  
Author(s):  
P. St-Pierre ◽  
T. Dang ◽  
B. Joshi ◽  
I. R. Nabi

2004 ◽  
Vol 168 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Juan Martin-Serrano ◽  
Scott W. Eastman ◽  
Wayne Chung ◽  
Paul D. Bieniasz

Many enveloped viruses exploit the class E vacuolar protein-sorting (VPS) pathway to bud from cells, and use peptide motifs to recruit specific class E VPS factors. Homologous to E6AP COOH terminus (HECT) ubiquitin ligases have been implicated as cofactors for PPXY motif–dependent budding, but precisely which members of this family are responsible, and how they access the VPS pathway is unclear. Here, we show that PPXY-dependent viral budding is unusually sensitive to inhibitory fragments derived from specific HECT ubiquitin ligases, namely WWP1 and WWP2. We also show that WWP1, WWP2, or Itch ubiquitin ligase recruitment promotes PPXY-dependent virion release, and that this function requires that the HECT ubiquitin ligase domain be catalytically active. Finally, we show that several mammalian HECT ubiquitin ligases, including WWP1, WWP2, and Itch are recruited to class E compartments induced by dominant negative forms of the class E VPS ATPase, VPS4. These data indicate that specific HECT ubiquitin ligases can link PPXY motifs to the VPS pathway to induce viral budding.


2008 ◽  
Vol 19 (6) ◽  
pp. 2620-2630 ◽  
Author(s):  
Mei Dong ◽  
James P. Bridges ◽  
Karen Apsley ◽  
Yan Xu ◽  
Timothy E. Weaver

Mutations in the SFTPC gene associated with interstitial lung disease in human patients result in misfolding, endoplasmic reticulum (ER) retention, and degradation of the encoded surfactant protein C (SP-C) proprotein. In this study, genes specifically induced in response to transient expression of two disease-associated mutations were identified by microarray analyses. Immunoglobulin heavy chain binding protein (BiP) and two heat shock protein 40 family members, endoplasmic reticulum-localized DnaJ homologues ERdj4 and ERdj5, were significantly elevated and exhibited prolonged and specific association with the misfolded proprotein; in contrast, ERdj3 interacted with BiP, but it did not associate with either wild-type or mutant SP-C. Misfolded SP-C, ERdj4, and ERdj5 coprecipitated with p97/VCP indicating that the cochaperones remain associated with the misfolded proprotein until it is dislocated to the cytosol. Knockdown of ERdj4 and ERdj5 expression increased ER retention and inhibited degradation of misfolded SP-C, but it had little effect on the wild-type protein. Transient expression of ERdj4 and ERdj5 in X-box binding protein 1−/− mouse embryonic fibroblasts substantially restored rapid degradation of mutant SP-C proprotein, whereas transfection of HPD mutants failed to rescue SP-C endoplasmic reticulum-associated protein degradation. ERdj4 and ERdj5 promote turnover of misfolded SP-C and this activity is dependent on their ability to stimulate BiP ATPase activity.


2005 ◽  
Vol 388 (2) ◽  
pp. 647-655 ◽  
Author(s):  
Gerco HASSINK ◽  
Marjolein KIKKERT ◽  
Sjaak van VOORDEN ◽  
Shiow-Ju LEE ◽  
Robbert SPAAPEN ◽  
...  

In the present study, the human TEB4 is identified as a novel ER (endoplasmic reticulum)-resident ubiquitin ligase. TEB4 has homologues in many species and has a number of remarkable properties. TEB4 contains a conserved RING (really interesting new gene) finger and 13 predicted transmembrane domains. The RING finger of TEB4 and its homologues is situated at the N-terminus and has the unconventional C4HC3 configuration. The N-terminus of TEB4 is located in the cytosol. We show that the isolated TEB4 RING domain catalyses ubiquitin ligation in vitro in a reaction that is ubiquitin Lys48-specific and involves UBC7 (ubiquitin-conjugating enzyme 7). These properties are reminiscent of E3 enzymes, which are involved in ER-associated protein degradation. TEB4 is an ER degradation substrate itself, promoting its own degradation in a RING finger- and proteasome-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document