scholarly journals Physiological role of the interaction between CARMIL1 and capping protein

2013 ◽  
Vol 24 (19) ◽  
pp. 3047-3055 ◽  
Author(s):  
Marc Edwards ◽  
Yun Liang ◽  
Taekyung Kim ◽  
John A. Cooper

The regulation of free barbed ends is central to the control of dynamic actin assembly and actin-based motility in cells. Capping protein (CP) is known to regulate barbed ends and control actin assembly in cells. The CARMIL family of proteins can bind and inhibit CP in vitro, but the physiological significance of the interaction of CARMIL with CP in cells is poorly understood. Mammalian cells lacking CARMIL1 have defects in lamellipodia, macropinocytosis, cell migration, and Rac1 activation. Here we investigate the physiological significance of the CARMIL1–CP interaction, using a point mutant with a well-defined biochemical defect. We find that the CARMIL1–CP interaction is essential for the assembly of lamellipodia, the formation of ruffles, and the process of macropinocytosis. In contrast, the interaction of CARMIL1 with CP shows little to no importance for other functions of CARMIL1, including localization of CARMIL1 to the membrane, activation of Rac1, and cell migration. One implication is that lamellipodia are only marginally important for cell migration in a wound-healing model. The results also suggest that the ability of CARMIL1 to inhibit CP in cells may be regulated.

2021 ◽  
pp. mbc.E21-01-0032
Author(s):  
Andrew K. Lamb ◽  
Andres N. Fernandez ◽  
Olve B. Peersen ◽  
Santiago M. Di Pietro

Clathrin- and actin-mediated endocytosis is a fundamental process in eukaryotic cells. Previously, we discovered Tda2 as a new yeast dynein light chain that works with Aim21 to regulate actin assembly during endocytosis. Here, we show Tda2 functions as a dimerization engine bringing two Aim21 molecules together using a novel binding surface different than the canonical dynein light chain ligand binding groove. Point mutations on either protein that diminish the Tda2-Aim21 interaction in vitro cause the same in vivo phenotype as TDA2 deletion showing reduced actin capping protein recruitment and increased filamentous actin at endocytic sites. Remarkably, chemically induced dimerization of Aim21 rescues the endocytic phenotype of TDA2 deletion. We also uncovered a capping protein interacting motif in Aim21, expanding its function to a fundamental cellular pathway and showing such motif exists outside mammalian cells. Furthermore, specific disruption of this motif causes the same deficit of actin capping protein recruitment and increased filamentous actin at endocytic sites as AIM21 deletion. Thus, the data indicates the Tda2-Aim21 complex functions in actin assembly primarily through capping protein regulation. Collectively, our results provide a mechanistic view of the Tda2-Aim21 complex and its function in actin network regulation at endocytic sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria De Luca ◽  
Roberta Romano ◽  
Cecilia Bucci

AbstractV-ATPase is a large multi-subunit complex that regulates acidity of intracellular compartments and of extracellular environment. V-ATPase consists of several subunits that drive specific regulatory mechanisms. The V1G1 subunit, a component of the peripheral stalk of the pump, controls localization and activation of the pump on late endosomes and lysosomes by interacting with RILP and RAB7. Deregulation of some subunits of the pump has been related to tumor invasion and metastasis formation in breast cancer. We observed a decrease of V1G1 and RAB7 in highly invasive breast cancer cells, suggesting a key role of these proteins in controlling cancer progression. Moreover, in MDA-MB-231 cells, modulation of V1G1 affected cell migration and matrix metalloproteinase activation in vitro, processes important for tumor formation and dissemination. In these cells, characterized by high expression of EGFR, we demonstrated that V1G1 modulates EGFR stability and the EGFR downstream signaling pathways that control several factors required for cell motility, among which RAC1 and cofilin. In addition, we showed a key role of V1G1 in the biogenesis of endosomes and lysosomes. Altogether, our data describe a new molecular mechanism, controlled by V1G1, required for cell motility and that promotes breast cancer tumorigenesis.


2007 ◽  
Vol 18 (3) ◽  
pp. 827-838 ◽  
Author(s):  
Céline Revenu ◽  
Matthieu Courtois ◽  
Alphée Michelot ◽  
Cécile Sykes ◽  
Daniel Louvard ◽  
...  

Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.


1998 ◽  
Vol 143 (7) ◽  
pp. 1919-1930 ◽  
Author(s):  
Dorothy A. Schafer ◽  
Matthew D. Welch ◽  
Laura M. Machesky ◽  
Paul C. Bridgman ◽  
Shelley M. Meyer ◽  
...  

Actin filament assembly is critical for eukaryotic cell motility. Arp2/3 complex and capping protein (CP) regulate actin assembly in vitro. To understand how these proteins regulate the dynamics of actin filament assembly in a motile cell, we visualized their distribution in living fibroblasts using green flourescent protein (GFP) tagging. Both proteins were concentrated in motile regions at the cell periphery and at dynamic spots within the lamella. Actin assembly was required for the motility and dynamics of spots and for motility at the cell periphery. In permeabilized cells, rhodamine-actin assembled at the cell periphery and at spots, indicating that actin filament barbed ends were present at these locations. Inhibition of the Rho family GTPase rac1, and to a lesser extent cdc42 and RhoA, blocked motility at the cell periphery and the formation of spots. Increased expression of phosphatidylinositol 5-kinase promoted the movement of spots. Increased expression of LIM–kinase-1, which likely inactivates cofilin, decreased the frequency of moving spots and led to the formation of aggregates of GFP–CP. We conclude that spots, which appear as small projections on the surface by whole mount electron microscopy, represent sites of actin assembly where local and transient changes in the cortical actin cytoskeleton take place.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3055
Author(s):  
Elisabetta Stanzani ◽  
Leire Pedrosa ◽  
Guillaume Bourmeau ◽  
Oceane Anezo ◽  
Aleix Noguera-Castells ◽  
...  

Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients’ prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.


1997 ◽  
Vol 185 (3) ◽  
pp. 579-582 ◽  
Author(s):  
Davide Ferrari ◽  
Paola Chiozzi ◽  
Simonetta Falzoni ◽  
Stefania Hanau ◽  
Francesco Di  Virgilio

Microglial cells express a peculiar plasma membrane receptor for extracellular ATP, named P2Z/P2X7 purinergic receptor, that triggers massive transmembrane ion fluxes and a reversible permeabilization of the plasma membrane to hydrophylic molecules of up to 900 dalton molecule weight and eventual cell death (Di Virgilio, F. 1995. Immunol. Today. 16:524–528). The physiological role of this newly cloned (Surprenant, A., F. Rassendren, E. Kawashima, R.A. North and G. Buell. 1996. Science (Wash. DC). 272:735–737) cytolytic receptor is unknown. In vitro and in vivo activation of the macrophage and microglial cell P2Z/P2X7 receptor by exogenous ATP causes a large and rapid release of mature IL-1β. In the present report we investigated the role of microglial P2Z/P2X7 receptor in IL-1β release triggered by LPS. Our data suggest that LPS-dependent IL-1β release involves activation of this purinergic receptor as it is inhibited by the selective P2Z/P2X7 blocker oxidized ATP and modulated by ATP-hydrolyzing enzymes such as apyrase or hexokinase. Furthermore, microglial cells release ATP when stimulated with LPS. LPS-dependent release of ATP is also observed in monocyte-derived human macrophages. It is suggested that bacterial endotoxin activates an autocrine/paracrine loop that drives ATP-dependent IL-1β secretion.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
C. Mannelli ◽  
F. Ietta ◽  
C. Carotenuto ◽  
R. Romagnoli ◽  
A. Z. Szostek ◽  
...  

A proper fetomaternal immune-endocrine cross-talk in pregnancy is fundamental for reproductive success. This might be unbalanced by exposure to environmental chemicals, such as bisphenol A (BPA). As fetoplacental contamination with BPA originates from the maternal compartment, this study investigated the role of the endometrium in BPA effects on the placenta. To this end,in vitrodecidualized stromal cells were exposed to BPA 1 nM, and their conditioned medium (diluted 1 : 2) was used on chorionic villous explants from human placenta. Parallel cultures of placental explants were directly exposed to 0.5 nM BPA while, control cultures were exposed to the vehicle (EtOH 0.1%). After 24–48 h, culture medium from BPA-treated and control cultures was assayed for concentration of hormone human Chorionic Gonadotropin (β-hCG) and cytokine Macrophage Migration Inhibitory Factor (MIF). The results showed that direct exposure to BPA stimulated the release of both MIF andβ-hCG. These effects were abolished/diminished in placental cultures exposed to endometrial cell-conditioned medium. GM-MS analysis revealed that endometrial cells retain BPA, thus reducing the availability of this chemical for the placenta. The data obtained highlight the importance ofin vitromodels including the maternal component in reproducing the effects of environmental chemicals on human fetus/placenta.


1970 ◽  
Vol 116 (4) ◽  
pp. 693-707 ◽  
Author(s):  
P. D. Lawley ◽  
Carolyn J. Thatcher

1. In neutral aqueous solution N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) yields salts of nitrocyanamide as u.v.-absorbing products. With cysteine, as found independently by Schulz & McCalla (1969), the principal product is 2-nitràminothiazoline-4-carboxylic acid. Both these reactions liberate the methylating species; thiols enhance the rate markedly at neutral pH values. An alternative reaction with thiols gives cystine, presumably via the unstable S-nitrosocysteine. 2. Thiols (glutathione or N-acetylcysteine) in vitro at about the concentration found in mammalian cells enhance the rate of methylation of DNA markedly over that in neutral solution. 3. Treatment of cultured mammalian cells with MNNG results in rapid methylation of nucleic acids, the extent being greater the higher the thiol content of the cells. Rodent embryo cells are more extensively methylated than mouse L-cells of the same thiol content. Cellular thiol concentrations are decreased by MNNG. Proteins are less methylated by MNNG than are nucleic acids. 4. Methylation of cells by dimethyl sulphate does not depend on cellular thiol content and protein is not less methylated than nucleic acids. Methylation by MNNG may therefore be thiol-stimulated in cells. 5. Both in vitro and in cells about 7% of the methylation of DNA by MNNG occurs at the 6-oxygen atom of guanine. The major products 7-methylguanine and 3-methyladenine are given by both MNNG and dimethyl sulphate, but dimethyl sulphate does not yield O6-methylguanine. Possible reaction mechanisms to account for this difference between these methylating agents and its possible significance as a determinant of their biological effects are discussed.


2006 ◽  
Vol 291 (3) ◽  
pp. R664-R673 ◽  
Author(s):  
Laura Canesi ◽  
Caterina Ciacci ◽  
Lucia Cecilia Lorusso ◽  
Michele Betti ◽  
Tiziana Guarnieri ◽  
...  

In mammals, estrogens have dose- and cell-type-specific effects on immune cells and may act as pro- and anti-inflammatory stimuli, depending on the setting. In the bivalve mollusc Mytilus, the natural estrogen 17β-estradiol (E2) has been shown to affect neuroimmune functions. We have investigated the immunomodulatory role of E2 in Mytilus hemocytes, the cells responsible for the innate immune response. E2 at 5–25 nM rapidly stimulated phagocytosis and oxyradical production in vitro; higher concentrations of E2 inhibited phagocytosis. E2-induced oxidative burst was prevented by the nitric oxide (NO) synthase inhibitor NG-monomethyl-l-arginine and superoxide dismutase, indicating involvement of NO and O2−; NO production was confirmed by nitrite accumulation. The effects of E2 were prevented by the antiestrogen tamoxifen and by specific kinase inhibitors, indicating a receptor-mediated mechanism and involvement of p38 MAPK and PKC. E2 induced rapid and transient increases in the phosphorylation state of PKC, as well as of a aCREB-like (cAMP responsive element binding protein) transcription factor, as indicated by Western blot analysis with specific anti-phospho-antibodies. Localization of estrogen receptor-α- and -β-like proteins in hemocytes was investigated by immunofluorescence confocal microscopy. The effects of E2 on immune function were also investigated in vivo at 6 and 24 h in hemocytes of E2-injected mussels. E2 significantly affected hemocyte lysosomal membrane stability, phagocytosis, and extracellular release of hydrolytic enzymes: lower concentrations of E2 resulted in immunostimulation, and higher concentrations were inhibitory. Our data indicate that the physiological role of E2 in immunomodulation is conserved from invertebrates to mammals.


Sign in / Sign up

Export Citation Format

Share Document