scholarly journals Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast

2016 ◽  
Vol 27 (8) ◽  
pp. 1210-1219 ◽  
Author(s):  
Naveen Kumar Chandappa Gowda ◽  
Jayasankar Mohanakrishnan Kaimal ◽  
Anna E. Masser ◽  
Wenjing Kang ◽  
Marc R. Friedländer ◽  
...  

Cells maintain proteostasis by selectively recognizing and targeting misfolded proteins for degradation. In Saccharomyces cerevisiae, the Hsp70 nucleotide exchange factor Fes1 is essential for the degradation of chaperone-associated misfolded proteins by the ubiquitin-proteasome system. Here we show that the FES1 transcript undergoes unique 3′ alternative splicing that results in two equally active isoforms with alternative C-termini, Fes1L and Fes1S. Fes1L is actively targeted to the nucleus and represents the first identified nuclear Hsp70 nucleotide exchange factor. In contrast, Fes1S localizes to the cytosol and is essential to maintain proteostasis. In the absence of Fes1S, the heat-shock response is constitutively induced at normally nonstressful conditions. Moreover, cells display severe growth defects when elevated temperatures, amino acid analogues, or the ectopic expression of misfolded proteins, induce protein misfolding. Importantly, misfolded proteins are not targeted for degradation by the ubiquitin-proteasome system. These observations support the notion that cytosolic Fes1S maintains proteostasis by supporting the removal of toxic misfolded proteins by proteasomal degradation. This study provides key findings for the understanding of the organization of protein quality control mechanisms in the cytosol and nucleus.

Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1141 ◽  
Author(s):  
Amanda B. Abildgaard ◽  
Sarah K. Gersing ◽  
Sven Larsen-Ledet ◽  
Sofie V. Nielsen ◽  
Amelie Stein ◽  
...  

Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 352-352
Author(s):  
Hyeongjoo Oh ◽  
Young-Hee Kang

Abstract Objectives Misfolded proteins were formed in the endoplasmic reticulum (ER) due to diverse stresses including metabolic stress and oxidative stress. Accumulation of unfolded proteins in the ER stimulates chaperone expression and ER-associated degradation (ERAD) process. This process involves the recognition of misfolded proteins to maintain the protein quality control, which in turn eliminates in association with the ER membrane. Upregulation of ubiquitination enzymes is an essential mechanism by which ER stress enhances ERAD. Asaronic acid (2,4,5-trimethoxybenzoic acid), identified as one of purple perilla constituents, has anti-diabetic and anti-inflammatory effects. This study attempted to examine whether asaronic acid attenuated the 7Β-hydroxycholesterol-elicited ER stress of macrophages. Methods J774A.1 murine macrophage was incubated with 28 μM 7Β-hydroxycholesterol in absence and presence of 1–20 μΜ asaronic acid up to 24 h. Cytotoxicity was assessed by MTT assay. Expression levels of ER stress-responsive chaperones and ERAD biomarkers were measured by Western blot analysis and immunocytochemical staining with a specific antibody. Results Asaronic acid at 1–20 μM had a cytoprotective effect on macrophages against 7Β-hydroxycholesterol-induced toxicity. Asaronic acid diminished the induction and activation of ER stress sensors such as Grp/BiP, IRE1, and PERK in macrophages exposed to 7Β-hydroxycholesterol. Also, asaronic acid positively influenced the induction of ERAD process-linked components of EDEM1, OS9, SEl1L, HRD1, and VCP1/p97. Furthermore, asaronic acid promoted subsequent degradation reduced by 7Β-hydroxycholesterol via the cytosolar ubiquitin-proteasome system of macrophages. Conclusions These results demonstrate that asaronic acid attenuated 7Β-hydroxycholesterol-induced ER stress and improved impaired ER stress-mediated degradation systems. Therefore, asaronic acid may be a potent agent protecting macrophages against pathological ER stress damage. Funding Sources This work was supported by the BK21 FOUR(Fostering Outstanding Universities for Research, 4220200913807) funded by the National Research Foundation of Korea (NRF).


Author(s):  
Tomohiro Nakamura ◽  
Stuart A. Lipton

Neurodegenerative diseases (NDDs) often represent disorders of protein folding. Rather than large aggregates, recent evidence suggests that soluble oligomers of misfolded proteins are the most neurotoxic species. Emerging evidence points to small, soluble oligomers of misfolded proteins as the cause of synaptic dysfunction and loss, the major pathological correlate to disease progression in many NDDs including Alzheimer’s disease. The protein quality control machinery of the cell, which includes molecular chaperones as found in the endoplasmic reticulum (ER), the ubiquitin-proteasome system (UPS), and various forms of autophagy, can counterbalance the accumulation of misfolded proteins to some extent. Their ability to eliminate the neurotoxic effects of misfolded proteins, however, declines with age. A plausible explanation for the age-dependent deterioration of the quality control machinery involves compromise of these systems by excessive generation of reactive oxygen species (ROS), such as superoxide anion (O2-), and reactive nitrogen species (RNS), such as nitric oxide (NO). The resulting redox stress contributes to the accumulation of misfolded proteins. Here, we focus on aberrantly increased generation of NO-related species since this process appears to accelerate the manifestation of key neuropathological features, including protein misfolding. We review the chemical mechanisms of posttranslational modification by RNS such as protein S-nitrosylation of critical cysteine thiol groups and nitration of tyrosine residues, showing how they contribute to the pathogenesis of NDDs.


2007 ◽  
Vol 18 (1) ◽  
pp. 153-165 ◽  
Author(s):  
Sae-Hun Park ◽  
Natalia Bolender ◽  
Frederik Eisele ◽  
Zlatka Kostova ◽  
Junko Takeuchi ◽  
...  

The mechanism of protein quality control and elimination of misfolded proteins in the cytoplasm is poorly understood. We studied the involvement of cytoplasmic factors required for degradation of two endoplasmic reticulum (ER)-import–defective mutated derivatives of carboxypeptidase yscY (ΔssCPY* and ΔssCPY*-GFP) and also examined the requirements for degradation of the corresponding wild-type enzyme made ER-import incompetent by removal of its signal sequence (ΔssCPY). All these protein species are rapidly degraded via the ubiquitin–proteasome system. Degradation requires the ubiquitin-conjugating enzymes Ubc4p and Ubc5p, the cytoplasmic Hsp70 Ssa chaperone machinery, and the Hsp70 cochaperone Ydj1p. Neither the Hsp90 chaperones nor Hsp104 or the small heat-shock proteins Hsp26 and Hsp42 are involved in the degradation process. Elimination of a GFP fusion (GFP-cODC), containing the C-terminal 37 amino acids of ornithine decarboxylase (cODC) directing this enzyme to the proteasome, is independent of Ssa1p function. Fusion of ΔssCPY* to GFP-cODC to form ΔssCPY*-GFP-cODC reimposes a dependency on the Ssa1p chaperone for degradation. Evidently, the misfolded protein domain dictates the route of protein elimination. These data and our further results give evidence that the Ssa1p-Ydj1p machinery recognizes misfolded protein domains, keeps misfolded proteins soluble, solubilizes precipitated protein material, and escorts and delivers misfolded proteins in the ubiquitinated state to the proteasome for degradation.


2020 ◽  
Vol 117 (48) ◽  
pp. 30380-30390
Author(s):  
Christopher Lim ◽  
Jason M. Berk ◽  
Alyssa Blaise ◽  
Josie Bircher ◽  
Anthony J. Koleske ◽  
...  

Rho family GTPases regulate an array of cellular processes and are often modulated by pathogens to promote infection. Here, we identify a cryptic guanine nucleotide exchange factor (GEF) domain in the OtDUB protein encoded by the pathogenic bacteriumOrientia tsutsugamushi. A proteomics-based OtDUB interaction screen identified numerous potential host interactors, including the Rho GTPases Rac1 and Cdc42. We discovered a domain in OtDUB with Rac1/Cdc42 GEF activity (OtDUBGEF), with higher activity toward Rac1 in vitro. While this GEF bears no obvious sequence similarity to known GEFs, crystal structures of OtDUBGEFalone (3.0 Å) and complexed with Rac1 (1.7 Å) reveal striking convergent evolution, with a unique topology, on a V-shaped bacterial GEF fold shared with other bacterial GEF domains. Structure-guided mutational analyses identified residues critical for activity and a mechanism for nucleotide displacement. Ectopic expression of OtDUB activates Rac1 preferentially in cells, and expression of the OtDUBGEFalone alters cell morphology. Cumulatively, this work reveals a bacterial GEF within the multifunctional OtDUB that co-opts host Rac1 signaling to induce changes in cytoskeletal structure.


2021 ◽  
Author(s):  
Pascal Demange ◽  
Etienne Joly ◽  
Julien Marcoux ◽  
Patrick R. A. Zanon ◽  
Dymytrii Listunov ◽  
...  

ABSTRACTHundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs. Graphical abstract


2020 ◽  
Author(s):  
Hongyi Wu ◽  
Davis T.W. Ng ◽  
Ian Cheong ◽  
Paul Matsudaira

AbstractThe quality control of intracellular proteins is achieved by degrading misfolded proteins which cannot be refolded by molecular chaperones. In eukaryotes, such degradation is handled primarily by the ubiquitin-proteasome system. However, it remains unclear whether and how protein quality control deploys various deubiquitinases. To address this question, we screened deletions or mutation of the 20 deubiquitinase genes in Saccharomyces cerevisiae and discovered that almost half of the mutations slowed the removal of misfolded proteins whereas none of the remaining mutations accelerated this process significantly. Further characterization revealed that Ubp6 maintains the level of free ubiquitin to promote the elimination of misfolded cytosolic proteins, while Ubp3 supports the degradation of misfolded cytosolic and ER luminal proteins by different mechanisms.


2018 ◽  
Vol 87 (1) ◽  
pp. 751-782 ◽  
Author(s):  
Nicole Berner ◽  
Karl-Richard Reutter ◽  
Dieter H. Wolf

Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin–proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.


2020 ◽  
Vol 27 (3) ◽  
pp. 251-255 ◽  
Author(s):  
Mohamed A. Eldeeb ◽  
Mohamed A. Ragheb ◽  
Mansoore Esmaili ◽  
Faraz Hussein

A pivotal feature that underlies the development of neurodegeneration is the accumulation of protein aggregates. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to identify, repair and/or eliminate the misfolded abnormal proteins. Chaperones identify any otherwise abnormal conformations in proteins and often help them to regain their correct conformation. However, if repair is not an option, the abnormal protein is selectively degraded to prevent its oligomerization into toxic multimeric complexes. Autophagiclysosomal system and the ubiquitin-proteasome system mediate the targeted degradation of the aberrant protein fragments. Despite the increasing understanding of the molecular counteracting responses toward the accumulation of dysfunctional misfolded proteins, the molecular links between the upstream physiological inputs and the clearance of abnormal misfolded proteins is relatively poorly understood. Recent work has demonstrated that certain physiological states such as vigorous exercise and fasting may enhance the ability of mammalian cells to clear misfolded, toxic and aberrant protein fragments. These findings unveil a novel mechanism that activates the cells' protein-disposal machinery, facilitating the adaptation process of cellular proteome to fluctuations in cellular demands and alterations of environmental cues. Herein, we briefly discuss the molecular interconnection between certain physiological cues and proteasomal degradation pathway in the context of these interesting findings and highlight some of the future prospects.


2021 ◽  
Author(s):  
Amanda B Abildgaard ◽  
Søren D Petersen ◽  
Fia B Larsen ◽  
Caroline Kampmeyer ◽  
Kristoffer E Johansson ◽  
...  

Protein quality control (PQC) degrons are short protein segments that target misfolded proteins for degradation through the ubiquitin-proteasome system (UPS). To uncover how PQC degrons function, we performed a screen in Saccharomyces cerevisiae by fusing a library of flexible tetrapeptides to the C-terminus of the Ura3-HA-GFP reporter. The identified degrons exhibited high sequence variation but with marked hydrophobicity. Notably, the best scoring degrons constitute predicted Hsp70-binding motifs. When directly tested, a canonical Hsp70 binding motif (RLLL) functioned as a dose-dependent PQC degron that was targeted by Hsp70, Hsp110, Fes1, several Hsp40 J-domain co-chaperones and the PQC E3 ligase Ubr1. Our results suggest that multiple PQC degrons overlap with chaperone-binding sites and that PQC-linked degradation achieves specificity via chaperone binding. Thus, the PQC system has evolved to exploit the intrinsic capacity of chaperones to recognize misfolded proteins, thereby placing them at the nexus of protein folding and degradation.


Sign in / Sign up

Export Citation Format

Share Document