scholarly journals The Cytoplasmic Hsp70 Chaperone Machinery Subjects Misfolded and Endoplasmic Reticulum Import-incompetent Proteins to Degradation via the Ubiquitin–Proteasome System

2007 ◽  
Vol 18 (1) ◽  
pp. 153-165 ◽  
Author(s):  
Sae-Hun Park ◽  
Natalia Bolender ◽  
Frederik Eisele ◽  
Zlatka Kostova ◽  
Junko Takeuchi ◽  
...  

The mechanism of protein quality control and elimination of misfolded proteins in the cytoplasm is poorly understood. We studied the involvement of cytoplasmic factors required for degradation of two endoplasmic reticulum (ER)-import–defective mutated derivatives of carboxypeptidase yscY (ΔssCPY* and ΔssCPY*-GFP) and also examined the requirements for degradation of the corresponding wild-type enzyme made ER-import incompetent by removal of its signal sequence (ΔssCPY). All these protein species are rapidly degraded via the ubiquitin–proteasome system. Degradation requires the ubiquitin-conjugating enzymes Ubc4p and Ubc5p, the cytoplasmic Hsp70 Ssa chaperone machinery, and the Hsp70 cochaperone Ydj1p. Neither the Hsp90 chaperones nor Hsp104 or the small heat-shock proteins Hsp26 and Hsp42 are involved in the degradation process. Elimination of a GFP fusion (GFP-cODC), containing the C-terminal 37 amino acids of ornithine decarboxylase (cODC) directing this enzyme to the proteasome, is independent of Ssa1p function. Fusion of ΔssCPY* to GFP-cODC to form ΔssCPY*-GFP-cODC reimposes a dependency on the Ssa1p chaperone for degradation. Evidently, the misfolded protein domain dictates the route of protein elimination. These data and our further results give evidence that the Ssa1p-Ydj1p machinery recognizes misfolded protein domains, keeps misfolded proteins soluble, solubilizes precipitated protein material, and escorts and delivers misfolded proteins in the ubiquitinated state to the proteasome for degradation.

2018 ◽  
Vol 87 (1) ◽  
pp. 751-782 ◽  
Author(s):  
Nicole Berner ◽  
Karl-Richard Reutter ◽  
Dieter H. Wolf

Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin–proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.


2016 ◽  
Vol 27 (8) ◽  
pp. 1210-1219 ◽  
Author(s):  
Naveen Kumar Chandappa Gowda ◽  
Jayasankar Mohanakrishnan Kaimal ◽  
Anna E. Masser ◽  
Wenjing Kang ◽  
Marc R. Friedländer ◽  
...  

Cells maintain proteostasis by selectively recognizing and targeting misfolded proteins for degradation. In Saccharomyces cerevisiae, the Hsp70 nucleotide exchange factor Fes1 is essential for the degradation of chaperone-associated misfolded proteins by the ubiquitin-proteasome system. Here we show that the FES1 transcript undergoes unique 3′ alternative splicing that results in two equally active isoforms with alternative C-termini, Fes1L and Fes1S. Fes1L is actively targeted to the nucleus and represents the first identified nuclear Hsp70 nucleotide exchange factor. In contrast, Fes1S localizes to the cytosol and is essential to maintain proteostasis. In the absence of Fes1S, the heat-shock response is constitutively induced at normally nonstressful conditions. Moreover, cells display severe growth defects when elevated temperatures, amino acid analogues, or the ectopic expression of misfolded proteins, induce protein misfolding. Importantly, misfolded proteins are not targeted for degradation by the ubiquitin-proteasome system. These observations support the notion that cytosolic Fes1S maintains proteostasis by supporting the removal of toxic misfolded proteins by proteasomal degradation. This study provides key findings for the understanding of the organization of protein quality control mechanisms in the cytosol and nucleus.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 352-352
Author(s):  
Hyeongjoo Oh ◽  
Young-Hee Kang

Abstract Objectives Misfolded proteins were formed in the endoplasmic reticulum (ER) due to diverse stresses including metabolic stress and oxidative stress. Accumulation of unfolded proteins in the ER stimulates chaperone expression and ER-associated degradation (ERAD) process. This process involves the recognition of misfolded proteins to maintain the protein quality control, which in turn eliminates in association with the ER membrane. Upregulation of ubiquitination enzymes is an essential mechanism by which ER stress enhances ERAD. Asaronic acid (2,4,5-trimethoxybenzoic acid), identified as one of purple perilla constituents, has anti-diabetic and anti-inflammatory effects. This study attempted to examine whether asaronic acid attenuated the 7Β-hydroxycholesterol-elicited ER stress of macrophages. Methods J774A.1 murine macrophage was incubated with 28 μM 7Β-hydroxycholesterol in absence and presence of 1–20 μΜ asaronic acid up to 24 h. Cytotoxicity was assessed by MTT assay. Expression levels of ER stress-responsive chaperones and ERAD biomarkers were measured by Western blot analysis and immunocytochemical staining with a specific antibody. Results Asaronic acid at 1–20 μM had a cytoprotective effect on macrophages against 7Β-hydroxycholesterol-induced toxicity. Asaronic acid diminished the induction and activation of ER stress sensors such as Grp/BiP, IRE1, and PERK in macrophages exposed to 7Β-hydroxycholesterol. Also, asaronic acid positively influenced the induction of ERAD process-linked components of EDEM1, OS9, SEl1L, HRD1, and VCP1/p97. Furthermore, asaronic acid promoted subsequent degradation reduced by 7Β-hydroxycholesterol via the cytosolar ubiquitin-proteasome system of macrophages. Conclusions These results demonstrate that asaronic acid attenuated 7Β-hydroxycholesterol-induced ER stress and improved impaired ER stress-mediated degradation systems. Therefore, asaronic acid may be a potent agent protecting macrophages against pathological ER stress damage. Funding Sources This work was supported by the BK21 FOUR(Fostering Outstanding Universities for Research, 4220200913807) funded by the National Research Foundation of Korea (NRF).


Author(s):  
Tomohiro Nakamura ◽  
Stuart A. Lipton

Neurodegenerative diseases (NDDs) often represent disorders of protein folding. Rather than large aggregates, recent evidence suggests that soluble oligomers of misfolded proteins are the most neurotoxic species. Emerging evidence points to small, soluble oligomers of misfolded proteins as the cause of synaptic dysfunction and loss, the major pathological correlate to disease progression in many NDDs including Alzheimer’s disease. The protein quality control machinery of the cell, which includes molecular chaperones as found in the endoplasmic reticulum (ER), the ubiquitin-proteasome system (UPS), and various forms of autophagy, can counterbalance the accumulation of misfolded proteins to some extent. Their ability to eliminate the neurotoxic effects of misfolded proteins, however, declines with age. A plausible explanation for the age-dependent deterioration of the quality control machinery involves compromise of these systems by excessive generation of reactive oxygen species (ROS), such as superoxide anion (O2-), and reactive nitrogen species (RNS), such as nitric oxide (NO). The resulting redox stress contributes to the accumulation of misfolded proteins. Here, we focus on aberrantly increased generation of NO-related species since this process appears to accelerate the manifestation of key neuropathological features, including protein misfolding. We review the chemical mechanisms of posttranslational modification by RNS such as protein S-nitrosylation of critical cysteine thiol groups and nitration of tyrosine residues, showing how they contribute to the pathogenesis of NDDs.


2008 ◽  
Vol 181 (7) ◽  
pp. 1095-1105 ◽  
Author(s):  
Daniel C. Scott ◽  
Randy Schekman

Misfolded proteins in the endoplasmic reticulum (ER) are identified and degraded by the ER-associated degradation pathway (ERAD), a component of ER quality control. In ERAD, misfolded proteins are removed from the ER by retrotranslocation into the cytosol where they are degraded by the ubiquitin–proteasome system. The identity of the specific protein components responsible for retrotranslocation remains controversial, with the potential candidates being Sec61p, Der1p, and Doa10. We show that the cytoplasmic N-terminal domain of a short-lived transmembrane ERAD substrate is exposed to the lumen of the ER during the degradation process. The addition of N-linked glycan to the N terminus of the substrate is prevented by mutation of a specific cysteine residue of Sec61p, as well as a specific cysteine residue of the substrate protein. We show that the substrate protein forms a disulfide-linked complex to Sec61p, suggesting that at least part of the retrotranslocation process involves Sec61p.


2020 ◽  
Author(s):  
Hongyi Wu ◽  
Davis T.W. Ng ◽  
Ian Cheong ◽  
Paul Matsudaira

AbstractThe quality control of intracellular proteins is achieved by degrading misfolded proteins which cannot be refolded by molecular chaperones. In eukaryotes, such degradation is handled primarily by the ubiquitin-proteasome system. However, it remains unclear whether and how protein quality control deploys various deubiquitinases. To address this question, we screened deletions or mutation of the 20 deubiquitinase genes in Saccharomyces cerevisiae and discovered that almost half of the mutations slowed the removal of misfolded proteins whereas none of the remaining mutations accelerated this process significantly. Further characterization revealed that Ubp6 maintains the level of free ubiquitin to promote the elimination of misfolded cytosolic proteins, while Ubp3 supports the degradation of misfolded cytosolic and ER luminal proteins by different mechanisms.


2002 ◽  
Vol 13 (6) ◽  
pp. 1806-1818 ◽  
Author(s):  
Christof Taxis ◽  
Frank Vogel ◽  
Dieter H. Wolf

Protein quality control is an essential function of the endoplasmic reticulum. Misfolded proteins unable to acquire their native conformation are retained in the endoplasmic reticulum, retro-translocated back into the cytosol, and degraded via the ubiquitin-proteasome system. We show that efficient degradation of soluble malfolded proteins in yeast requires a fully competent early secretory pathway. Mutations in proteins essential for ER-Golgi protein traffic severely inhibit ER degradation of the model substrate CPY*. We found ER localization of CPY* in WT cells, but no other specific organelle for ER degradation could be identified by electron microscopy studies. Because CPY* is degraded in COPI coat mutants, only a minor fraction of CPY* or of a proteinaceous factor required for degradation seems to enter the recycling pathway between ER and Golgi. Therefore, we propose that the disorganized structure of the ER and/or the mislocalization of Kar2p, observed in early secretory mutants, is responsible for the reduction in CPY* degradation. Further, we observed that mutations in proteins directly involved in degradation of malfolded proteins (Der1p, Der3/Hrd1p, and Hrd3p) lead to morphological changes of the endoplasmic reticulum and the Golgi, escape of CPY* into the secretory pathway and a slower maturation rate of wild-type CPY.


2009 ◽  
Vol 284 (24) ◽  
pp. 16082-16089 ◽  
Author(s):  
Sven M. Alberts ◽  
Caroline Sonntag ◽  
Antje Schäfer ◽  
Dieter H. Wolf

Misfolded proteins of the secretory pathway are recognized in the endoplasmic reticulum (ER), retrotranslocated into the cytoplasm, and degraded by the ubiquitin-proteasome system. Right after retrotranslocation and polyubiquitination, they are extracted from the cytosolic side of the ER membrane through a complex consisting of the AAA ATPase Cdc48 (p97 in mammals), Ufd1, and Npl4. This complex delivers misfolded proteins to the proteasome for final degradation. Extraction, delivery, and processing of ERAD (ER-associated degradation) substrates to the proteasome requires additional cofactors of Cdc48. Here we characterize the UBX domain containing protein Ubx4 (Cui1) as a crucial factor for the degradation of polyubiquitinated proteins via ERAD. Ubx4 modulates the Cdc48-Ufd1-Npl4 complex to guarantee its correct function. Mutant variants of Ubx4 lead to defective degradation of misfolded proteins and accumulation of polyubiquitinated proteins bound to Cdc48. We show the requirement of the UBX domain of Ubx4 for its function in ERAD. The observation that Ubx2 and Ubx4 are not found together in one complex with Cdc48 suggests several distinct steps in modulating the activity and localization of Cdc48 in ERAD.


2013 ◽  
Vol 3 (10) ◽  
pp. 400 ◽  
Author(s):  
Kohta Ohnishi ◽  
Kazuhiro Irie ◽  
Akira Murakami

Background: Phytochemicals are secondary metabolites of plants that are produced for their defense against environmental stresses, such as polyphenols, which are considered to play a major role in protection against ultraviolet (UV) light-induced oxidative damage, as well as anti-fungal and anti-microbial activities. In addition, there is a great body of evidence showing that phytochemicals exhibit a wide array of physiological activities in humans. Accumulated data show that the bioavailability of most, if not all, phytochemicals is quite poor and their substantial biotransformation after ingestion has also been noted. Thus, they are characterized as non-nutritive xenobiotics in animals, and the question of why phytochemicals, which are produced for plant self-defense, have beneficial effects in humans is quite intriguing. Meanwhile, stress-induced denaturing of cellular proteins greatly affects their tertiary structure and critically disrupts their biological functions, occasionally leading to aggregation for the onset of some pathology. Many recent studies have indicated that protein quality control (PQC) systems play key roles in counteracting ‘proteo-stress’, which is comprised of several processes, including protein refolding by heat shock proteins (HSPs) and degradation of abnormal proteins by the ubiquitin-proteasome system as well as autophagy.Objective: Phytochemicals are xenobiotics, thus their biochemical interactions with animal proteins are considered to occur in a non-specific manner, which raises the possibility that some phytochemicals cause proteo-stress for activating PQC systems. Because their status is thought to be a critical determinant of homeostasis, the physiological functions of phytochemicals may be partially mediated through those unique systems. The present study was thus undertaken to address this possibility. Methods and Results: We focused on zerumbone (ZER), an electrophilic sesquiterpene present in Zingiber zerumbet Smith (shampoo ginger). This agent has been reported to exhibit various bioactivities, including anti-inflammation and cancer prevention[1,2]. Treatment of Hepa1c1c7 mouse hepatoma cells with ZER resulted in marked up-regulation of multiple HSPs, such as HSP40 and HSP70. Furthermore, oral administration to the nematode Caenorhabditis elegans and SD rats increased the expressions of some HSPs[3]. Interestingly, ZER also increased proteasome activity in Hepa1c1c7 cells, which was accompanied with up-regulation of 5, a major proteasome functional protein. In addition, the agent notably up-regulated the expressions of several pro-autophagic markers, including p62 and microtubule-associated protein 1 light-chain 3 (LC3)-II[4]. Experiments with biotin-labeled ZER as well as a specific antibody against ZER-adduct proteins revealed that it binds numerous cellular proteins in a non-specific manner. Along a similar line, incubation with ZER led to formations of p62-conjugated proteins and aggresomes. Together, these results suggest that ZER causes proteo-stress for potentiating the integrity of PQC systems. In support of this notion, ZER-bound proteins have been suggested to be partially recognized by HSP90, leading to dissociation of heat shok factor 1 (HSF1) from HSP90 for inducing multiple HSP genes. Next we speculated that mild chemical stress by ZER may exert beneficial effects, since ZER-bound proteins were time-dependently degraded, suggesting that defense capacity was amplified to a great level as compared with the non-treated condition. As expected, ZER conferred thermoresistance to Caenorhabditis elegans (C. elegans) and suppressed the proteo-toxicity of 4-hydroxy-2-nonenal, a potent electrophile produced through a lipid peroxidation process, in a p62-dependent manner. We then screened a number of nutrients and phytochemicals for their HSP70 inducibility, and found that certain phytochemicals, such as curcumin, phenethyl isothiocyanate, ursolic acid, and lycopene, were significantly active, whereas most nutrients were virtually inactive. These results may be associated with the fact that phytochemicals, but not nutrients, are foreign chemicals to animals, as noted above.Conclusion: Up-regulation of antioxidant and xenobiotics metabolizing enzymes has been reported to be an adaptive response in animals exposed to phytochemicals. Our present results imply that the process also increases the capacity to counteract proteo-stresses through activation of PQC systems. This putative phenomenon, representing the concept of hormesis[5], may be associated with mechanisms underlying the physiological functions of phytochemicals. Therefore, chronic ingestion of this class of chemicals may result in ‘chemical training’, in which self-defense systems are continuously activated for adaptation to phytochemical-driven stresses.Key words: heat shock proteins, ubiquitin-proteasome system, autophagy, C. elegans


2021 ◽  
Vol 22 (4) ◽  
pp. 2078
Author(s):  
Ji An Kang ◽  
Young Joo Jeon

The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin–proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.


Sign in / Sign up

Export Citation Format

Share Document