scholarly journals Modulations of SIR-nucleosome interactions of reconstructed yeast silent pre-heterochromatin by O-acetyl-ADP-ribose and magnesium

2017 ◽  
Vol 28 (3) ◽  
pp. 381-386 ◽  
Author(s):  
Shu-Yun Tung ◽  
Sue-Hong Wang ◽  
Sue-Ping Lee ◽  
Shu-Ping Tsai ◽  
Hsiao-Hsuian Shen ◽  
...  

Yeast silent heterochromatin provides an excellent model with which to study epigenetic inheritance. Previously we developed an in vitro assembly system to demonstrate the formation of filament structures with requirements that mirror yeast epigenetic gene silencing in vivo. However, the properties of these filaments were not investigated in detail. Here we show that the assembly system requires Sir2, Sir3, Sir4, nucleosomes, and O-acetyl-ADP-ribose. We also demonstrate that all Sir proteins and nucleosomes are components of these filaments to prove that they are SIR-nucleosome filaments. Furthermore, we show that the individual localization patterns of Sir proteins on the SIR-nucleosome filament reflect those patterns on telomeres in vivo. In addition, we reveal that magnesium exists in the SIR-nucleosome filament, with a role similar to that for chromatin condensation. These results suggest that a small number of proteins and molecules are sufficient to mediate the formation of a minimal yeast silent pre-heterochromatin in vitro.

1999 ◽  
Vol 19 (6) ◽  
pp. 4366-4378 ◽  
Author(s):  
Robert F. Ryan ◽  
David C. Schultz ◽  
Kasirajan Ayyanathan ◽  
Prim B. Singh ◽  
Josh R. Friedman ◽  
...  

ABSTRACT Krüppel-associated box (KRAB) domains are present in approximately one-third of all human zinc finger proteins (ZFPs) and are potent transcriptional repression modules. We have previously cloned a corepressor for the KRAB domain, KAP-1, which is required for KRAB-mediated repression in vivo. To characterize the repression mechanism utilized by KAP-1, we have analyzed the ability of KAP-1 to interact with murine (M31 and M32) and human (HP1α and HP1γ) homologues of the HP1 protein family, a class of nonhistone heterochromatin-associated proteins with a well-established epigenetic gene silencing function in Drosophila. In vitro studies confirmed that KAP-1 is capable of directly interacting with M31 and hHP1α, which are normally found in centromeric heterochromatin, as well as M32 and hHP1γ, both of which are found in euchromatin. Mapping of the region in KAP-1 required for HP1 interaction showed that amino acid substitutions which abolish HP1 binding in vitro reduce KAP-1 mediated repression in vivo. We observed colocalization of KAP-1 with M31 and M32 in interphase nuclei, lending support to the biochemical evidence that M31 and M32 directly interact with KAP-1. The colocalization of KAP-1 with M31 is sometimes found in subnuclear territories of potential pericentromeric heterochromatin, whereas colocalization of KAP-1 and M32 occurs in punctate euchromatic domains throughout the nucleus. This work suggests a mechanism for the recruitment of HP1-like gene products by the KRAB-ZFP–KAP-1 complex to specific loci within the genome through formation of heterochromatin-like complexes that silence gene activity. We speculate that gene-specific repression may be a consequence of the formation of such complexes, ultimately leading to silenced genes in newly formed heterochromatic chromosomal environments.


1976 ◽  
Vol 54 (8) ◽  
pp. 688-698 ◽  
Author(s):  
J. R. Percy ◽  
M. E. Percy ◽  
R. Baumal

A mathematical model, based on second-order reaction kinetics, has been used to describe the covalent assembly of immunoglobulin G (IgG) in vitro from its heavy (H) and light (L) chains (Percy, M. E., Baumal, R., Dorrington, K. J. &Percy, J. (1976) Can. J. Biochem. 54, 675–687). In the present paper, the same model has now been applied to the steady-state assembly of IgG in vivo. This mathematical approach permits a quantitative comparison of the pathways of covalent assembly used by given immunoglobulins in vivo and in vitro. The assumptions in the model are: the species L, H, HL, HH, HHL and LHHL belong to a common pool; incompleted IgG intermediates may freely assemble to form HL, HH, HHL and LHHL; the reaction rate for covalent linkage between any two reacting species is proportional to the products of the number densities of the reactants and to a parameter P which takes the value PHH if the reaction joins two H chains, and PHL if it joins an H and L chain. In vivo values of PHH/PHL were determined for the 18 mouse myeloma tumours and cell lines studied by Baumal et al. (Baumal, R., Potter, M. &Scharff, M. (1971) J. Exp. Med. 134, 1316–1334). From these analyses, we have arrived at the following conclusions: (1) the three major IgG subclasses have distinctive values of PHH/PHL (mean value 53 for IgG1, 12 for IgG2a and 2.8 for IgG2b); (2) for IgGs of the same subclass, the values of PHH/PHL are similar; (3) the mean in vivo values of PHH/PHL are very close to those determined from in vitro assembly experiments. Finally, the individual values of PHH/PHL have been used to simulate pulse-chase experiments in the various tumours and cell lines. Considering the sources and magnitude of experimental error, the theoretical pathways of assembly agree with those determined qualitatively from the pulse-chase experiments.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 547
Author(s):  
Marina Ramal-Sanchez ◽  
Antonella Fontana ◽  
Luca Valbonetti ◽  
Alessandra Ordinelli ◽  
Nicola Bernabò ◽  
...  

Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.


Author(s):  
Thriveni Vasanth Kumar ◽  
Manjunatha H. ◽  
Rajesh Kp

Objective: Dietary curcumin and capsaicin are well known for their health beneficial potencies. The current study was done to assess the anti-inflammatory activity of curcumin, capsaicin and their combination by employing in vitro and in vivo models.Methods: We investigated the protective effect of curcumin, capsaicin and their combination using in vitro heat induced human red blood cell (HRBC) membrane stabilisation, in vivo 3% agar induced leukocyte mobilisation and acetic acid induced vascular permeability assay.Results: Curcumin, capsaicin and their combination exhibited concentration dependent protective effect against heat-induced HRBC membrane destabilisation, while combined curcumin and capsaicin restored 87.0±0.64 % membrane stability and it is found to be better than curcumin, capsaicin and diclofenac sodium (75.0±0.25. 72±0.9 and 80.0±0.31 %) protective effect. In agar suspension induced leukocyte mobilization assay, the combined curcumin and capsaicin had shown 39.5±1.58 % of inhibition compared to individual curcumin and capsaicin, which showed moderate inhibition of 16.0±3.14 and 21.6±2.17 % respectively. Besides, the combined curcumin and capsaicin had shown highly significant inhibition of acetic acid-induced vascular permeability in rats (62.0±3.14 %), whereas individual curcumin and capsaicin showed moderate inhibition of vascular permeability with 36.0±2.41 and 43.0±1.92 % respectively.Conclusion: This study demonstrates the significant anti-inflammatory property of combined curcumin and capsaicin at half of the individual concentration of curcumin and capsaicin.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
M. K. Gill-Sharma

In the last 20 years, a pituitary-hypothalamus tissue culture system with intact neural and portal connections has been developed in our lab and used to understand the feedback mechanisms that regulate the secretions of adenohypophyseal hormones and fertility of male rats. In the last decade, several in vivo rat models have also been developed in our lab with a view to substantiate the in vitro findings, in order to delineate the role of pituitary hormones in the regulation of fertility of male rats. These studies have relied on both surgical and pharmacological interventions to modulate the secretions of gonadotropins and testosterone. The interrelationship between the circadian release of reproductive hormones has also been ascertained in normal men. Our studies suggest that testosterone regulates the secretion of prolactin through a long feedback mechanism, which appears to have been conserved from rats to humans. These studies have filled in a major lacuna pertaining to the role of prolactin in male reproductive physiology by demonstrating the interdependence between testosterone and prolactin. Systemic levels of prolactin play a deterministic role in the mechanism of chromatin condensation during spermiogenesis.


Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2223-2234 ◽  
Author(s):  
B.Y. Lu ◽  
J. Ma ◽  
J.C. Eissenberg

The roles of differentiation, mitotic activity and intrinsic promoter strength in the maintenance of heterochromatic silencing were investigated during development using an inducible lacZ gene as an in vivo probe. Heterochromatic silencing is initiated at the onset of gastrulation, approximately 1 hour after heterochromatin is first visible cytologically. A high degree of silencing is maintained in the mitotically active imaginal cells from mid-embryogenesis until early third instar larval stage, and extensive relaxation of silencing is tightly associated with the onset of differentiation. Relaxation of silencing can be triggered in vitro by ecdysone. In contrast, timing and extent of silencing at both the initiation and relaxation stages are insensitive to changes in cell cycle activity, and intrinsic promoter strength also does not influence the extent of silencing by heterochromatin. These data suggest that the silencing activity of heterochromatin is developmentally programmed.


RNA ◽  
2022 ◽  
pp. rna.078814.121
Author(s):  
Anna Ender ◽  
Nadine Grafl ◽  
Tim Kolberg ◽  
Sven Findeiss ◽  
Peter F. Stadler ◽  
...  

Removal of the 5' leader region is an essential step in the maturation of tRNA molecules in all domains of life. This reaction is catalyzed by various RNase P activities, ranging from ribonucleoproteins with ribozyme activity to protein-only forms. In Escherichia coli, the efficiency of RNase P mediated cleavage can be controlled by computationally designed riboswitch elements in a ligand-dependent way, where the 5' leader sequence of a tRNA precursor is either sequestered in a hairpin structure or presented as a single-stranded region accessible for maturation. In the presented work, the regulatory potential of such artificial constructs is tested on different forms of eukaryotic RNase P enzymes – two protein-only RNase P enzymes (PRORP1 and PRORP2) from Arabidopsis thaliana and the ribonucleoprotein of Homo sapiens. The PRORP enzymes were analyzed in vitro as well as in vivo in a bacterial RNase P complementation system. We also tested in HEK293T cells whether the riboswitches remain functional with human nuclear RNase P. While the regulatory principle of the synthetic riboswitches applies for all tested RNase P enzymes, the results also show differences in the substrate requirements of the individual enzyme versions. Hence, such designed RNase P riboswitches represent a novel tool to investigate the impact of the structural composition of the 5'-leader on substrate recognition by different types of RNase P enzymes.


Sign in / Sign up

Export Citation Format

Share Document