scholarly journals Drosophila MIC60/mitofilin conducts dual roles in mitochondrial motility and crista structure

2017 ◽  
Vol 28 (24) ◽  
pp. 3471-3479 ◽  
Author(s):  
Pei-I Tsai ◽  
Amanda M. Papakyrikos ◽  
Chung-Han Hsieh ◽  
Xinnan Wang

MIC60/mitofilin constitutes a hetero-oligomeric complex on the inner mitochondrial membranes to maintain crista structure. However, little is known about its physiological functions. Here, by characterizing Drosophila MIC60 mutants, we define its roles in vivo. We discover that MIC60 performs dual functions to maintain mitochondrial homeostasis. In addition to its canonical role in crista membrane structure, MIC60 regulates mitochondrial motility, likely by influencing protein levels of the outer mitochondrial membrane protein Miro that anchors mitochondria to the microtubule motors. Loss of MIC60 causes loss of Miro and mitochondrial arrest. At a cellular level, loss of MIC60 disrupts synaptic structure and function at the neuromuscular junctions. The dual roles of MIC60 in both mitochondrial crista structure and motility position it as a crucial player for cellular integrity and survival.

2013 ◽  
Vol 451 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Claudia C. S. Chini ◽  
Carlos Escande ◽  
Veronica Nin ◽  
Eduardo N. Chini

The nuclear receptor Rev-erbα has been implicated as a major regulator of the circadian clock and integrates circadian rhythm and metabolism. Rev-erbα controls circadian oscillations of several clock genes and Rev-erbα protein degradation is important for maintenance of the circadian oscillations and also for adipocyte differentiation. Elucidating the mechanisms that regulate Rev-erbα stability is essential for our understanding of these processes. In the present paper, we report that the protein DBC1 (Deleted in Breast Cancer 1) is a novel regulator of Rev-erbα. Rev-erbα and DBC1 interact in cells and in vivo, and DBC1 modulates the Rev-erbα repressor function. Depletion of DBC1 by siRNA (small interfering RNA) in cells or in DBC1-KO (knockout) mice produced a marked decrease in Rev-erbα protein levels, but not in mRNA levels. In contrast, DBC1 overexpression significantly enhanced Rev-erbα protein stability by preventing its ubiquitination and degradation. The regulation of Rev-erbα protein levels and function by DBC1 depends on both the N-terminal and C-terminal domains of DBC1. More importantly, in cells depleted of DBC1, there was a dramatic decrease in circadian oscillations of both Rev-erbα and BMAL1. In summary, our data identify DBC1 as an important regulator of the circadian receptor Rev-erbα and proposes that Rev-erbα could be involved in mediating some of the physiological effects of DBC1.


2021 ◽  
Author(s):  
Bin Qiu ◽  
Zhaohui Zhong ◽  
Shawn Righter ◽  
Yuxue Xu ◽  
Jun Wang ◽  
...  

Abstract FK506-binding protein 51 (encoded by Fkpb51) has been associated with stress-related mental illness. To identify its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assist morphological analysis identified that Fkbp51 knock-out (KO) mice possess more elongated CA and DG but shorter in height in coronal section when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls, pharmacological manipulation experiments suggest that this may occur through regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support that FKBP51 regulates microtubule-associated protein expression. Furthermore, in the absence of differences in mRNA expression, Fkbp51 KO hippocampus exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory of Parkin by FKBP51 and significance of their interaction on disease onset.


Endocrinology ◽  
2019 ◽  
Vol 160 (4) ◽  
pp. 817-826 ◽  
Author(s):  
Marie France Bouchard ◽  
Francis Bergeron ◽  
Jasmine Grenier Delaney ◽  
Louis-Mathieu Harvey ◽  
Robert S Viger

Abstract GATA4 is an essential transcriptional regulator required for gonadal development, differentiation, and function. In the developing testis, proposed GATA4-regulated genes include steroidogenic factor 1 (Nr5a1), SRY-related HMG box 9 (Sox9), and anti-Müllerian hormone (Amh). Although some of these genes have been validated as genuine GATA4 targets, it remains unclear whether GATA4 is a direct regulator of endogenous Amh transcription. We used a CRISPR/Cas9-based approach to specifically inactivate or delete the sole GATA-binding motif of the proximal mouse Amh promoter. AMH mRNA and protein levels were assessed at developmental time points corresponding to elevated AMH levels: fetal and neonate testes in males and adult ovaries in females. In males, loss of GATA binding to the Amh promoter significantly reduced Amh expression. Although the loss of GATA binding did not block the initiation of Amh transcription, AMH mRNA and protein levels failed to upregulate in the developing fetal and neonate testis. Interestingly, adult male mice presented no anatomical anomalies and had no evidence of retained Müllerian duct structures, suggesting that AMH levels, although markedly reduced, were sufficient to masculinize the male embryo. In contrast to males, GATA binding to the Amh promoter was dispensable for Amh expression in the adult ovary. These results provide conclusive evidence that in males, GATA4 is a positive modulator of Amh expression that works in concert with other key transcription factors to ensure that the Amh gene is sufficiently expressed in a correct spatiotemporal manner during fetal and prepubertal testis development.


1999 ◽  
Vol 144 (6) ◽  
pp. 1349-1360 ◽  
Author(s):  
Guoping Feng ◽  
Eric Krejci ◽  
Jordi Molgo ◽  
Jeanette M. Cunningham ◽  
Jean Massoulié ◽  
...  

Acetylcholinesterase (AChE) occurs in both asymmetric forms, covalently associated with a collagenous subunit called Q (ColQ), and globular forms that may be either soluble or membrane associated. At the skeletal neuromuscular junction, asymmetric AChE is anchored to the basal lamina of the synaptic cleft, where it hydrolyzes acetylcholine to terminate synaptic transmission. AChE has also been hypothesized to play developmental roles in the nervous system, and ColQ is also expressed in some AChE-poor tissues. To seek roles of ColQ and AChE at synapses and elsewhere, we generated ColQ-deficient mutant mice. ColQ−/− mice completely lacked asymmetric AChE in skeletal and cardiac muscles and brain; they also lacked asymmetric forms of the AChE homologue, butyrylcholinesterase. Thus, products of the ColQ gene are required for assembly of all detectable asymmetric AChE and butyrylcholinesterase. Surprisingly, globular AChE tetramers were also absent from neonatal ColQ−/− muscles, suggesting a role for the ColQ gene in assembly or stabilization of AChE forms that do not themselves contain a collagenous subunit. Histochemical, immunohistochemical, toxicological, and electrophysiological assays all indicated absence of AChE at ColQ−/− neuromuscular junctions. Nonetheless, neuromuscular function was initially robust, demonstrating that AChE and ColQ do not play obligatory roles in early phases of synaptogenesis. Moreover, because acute inhibition of synaptic AChE is fatal to normal animals, there must be compensatory mechanisms in the mutant that allow the synapse to function in the chronic absence of AChE. One structural mechanism appears to be a partial ensheathment of nerve terminals by Schwann cells. Compensation was incomplete, however, as animals lacking ColQ and synaptic AChE failed to thrive and most died before they reached maturity.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2409-2414 ◽  
Author(s):  
Mojgan Ahmadzadeh ◽  
Steven A. Rosenberg

Abstract Interleukin-2 (IL-2) is historically known as a T-cell growth factor. Accumulating evidence from knockout mice suggests that IL-2 is crucial for the homeostasis and function of CD4+CD25+ regulatory T cells in vivo. However, the impact of administered IL-2 in an immune intact host has not been studied in rodents or humans. Here, we studied the impact of IL-2 administration on the frequency and function of human CD4+CD25hi T cells in immune intact patients with melanoma or renal cancer. We found that the frequency of CD4+CD25hi T cells was significantly increased after IL-2 treatment, and these cells expressed phenotypic markers associated with regulatory T cells. In addition, both transcript and protein levels of Foxp3, a transcription factor exclusively expressed on regulatory T cells, were consistently increased in CD4 T cells following IL-2 treatment. Functional analysis of the increased number of CD4+CD25hi T cells revealed that this population exhibited potent suppressive activity in vitro. Collectively, our results demonstrate that administration of high-dose IL-2 increased the frequency of circulating CD4+CD25hi Foxp3+ regulatory T cells. Our findings suggest that selective inhibition of IL-2-mediated enhancement of regulatory T cells may improve the therapeutic effectiveness of IL-2 administration. (Blood. 2006;107:2409-2414)


2016 ◽  
Vol 40 (5) ◽  
pp. 1117-1128 ◽  
Author(s):  
Shizhu Jin ◽  
Hulun Li ◽  
Mingzi Han ◽  
Mengting Ruan ◽  
Zishuai Liu ◽  
...  

Background/Aims: Mesenchymal stem cell (MSC) transplantation has emerged as an option for the treatment of chronic hepatic cirrhosis, while its therapeutic efficacy could be improved. The bcl-2 gene is anti-apoptotic and can help cell survival and proliferation. Therefore, we explored whether transplanted MSCs with enhanced bcl-2 expression may be beneficial in the treatment of experimental cirrhosis in rats. Methods: MSCs were isolated from rat bone marrow, expanded in vitro and transfected with adeno-associated virus (AAV) engineered the bcl-2 gene (AAV-bcl-2). Rats with cirrhosis induced by carbon tetrachloride (CCl4) were treated with AAV-bcl-2 infected BMSCs-AAV-bcl-2, with the cells traced in vivo post transplantation. Liver pathology and function were evaluated 7, 14, 21, and 28 days post transplantation, respectively. Results: On day 7 post transplantation, the infused AAV-bcl-2 had integrated into the hepatocyte-like cells (HLCs) that expressed albumin (ALB), Cytokeratin 18 (CK18), and hepatocytes nuclear factor 4a (HNF4a). On day 28 post transplantation, rats in the cirrhosis + BMSCs-AAV-bcl-2 group showed the most dense HLCs, highest mRNA and protein levels of ALB, CK18, and HNF4a, compared to the other groups. Their liver function recovered most rapidly in 4 week observation, while histological sign of cirrhosis remained at the end of this period. Conclusion: BMSCs over expressing bcl-2 gene showed better survival, and enhanced the differentiation into hepatocytes-like cells, and appeared to promote the recovery of liver function in rats with experimental cirrhosis.


2019 ◽  
Author(s):  
Pei-Yi Chen ◽  
Yi-Wei Tsai ◽  
Angela Giangrande ◽  
Cheng-Ting Chien

AbstractSynaptic structure and activity are sensitive to environmental alterations. Modulation of synaptic morphology and function is often induced by signals from glia. However, the process by which glia mediate synaptic responses to environmental perturbations such as hypoxia remains unknown. Here, we report that, in the Drosophila trachealess (trh) mutant, smaller synaptic boutons form clusters named bunch boutons appear at larval neuromuscular junctions (NMJs), which is induced by the reduction of internal oxygen levels due to defective tracheal branches. Thus, the bunch bouton phenotype in the trh mutant is suppressed by hyperoxia, and recapitulated in wild-type larvae raised under hypoxia. We further show that hypoxia-inducible factor (HIF)-1α/Similar (Sima) is critical in mediating hypoxia-induced bunch bouton formation. Sima upregulates the level of the Wnt/Wingless (Wg) signal in glia, leading to reorganized microtubule structures within presynaptic sites. Finally, hypoxia-induced bunch boutons maintain normal synaptic transmission at the NMJs, which is crucial for coordinated larval locomotion.Author summaryOxygen is essential for animals to maintain their life such as growth, metabolism, responsiveness, and movement. It is therefore important to understand how animal cells trigger hypoxia response and adapt to hypoxia thereafter. Both mammalian vascular and insect tracheal branches are induced to enhance the oxygen delivery. However, the study of hypoxia response in the nervous system remains limited. In this study, we assess the morphology of Drosophila neuromuscular junctions (NMJs), a model system to study development and function of synapses, in two hypoxia conditions, one with raising wild-type larvae in hypoxia, and the other in the trachealess (trh) mutant in which the trachea is defective, causing insufficient oxygen supply. Interestingly, glia, normally wrapping the axons of NMJs, invade into synapse and trigger Wg signals to reconstitute the synaptic structure under hypoxia. This synaptic remodeling maintains the synaptic transmission of synapse, which associate the locomotor behavior of larvae.


2018 ◽  
Author(s):  
Lewie Zeng ◽  
Rachid El Bejjani ◽  
Marc Hammarlund

AbstractMembers of the Amyloid Precursor Protein (APP) family have important functions during neuronal development. However, their physiological functions in the mature nervous system are not fully understood. Here we use the C. elegans GABAergic motor neurons to study the post-developmental function of the APP-like protein APL-1 in vivo. We find that apl-1 has minimum roles in the maintenance of gross neuron morphology and function. However, we show that apl-1 is an inhibitor of axon regeneration, acting on mature neurons to limit regrowth in response to injury. The small GTPase Rab6/RAB-6.2 also inhibits regeneration, and does so in part by maintaining protein levels of APL-1. To inhibit regeneration, APL-1 functions via the E2 domain of its ectodomain; the cytoplasmic tail, transmembrane anchoring, and the E1 domain are not required for this function. Our data defines a novel role for APL-1 in modulating the neuronal response to injury.


Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev193920
Author(s):  
Susie Barbeau ◽  
Julie Tahraoui-Bories ◽  
Claire Legay ◽  
Cécile Martinat

ABSTRACTThe neuromuscular junction (NMJ) has been the model of choice to understand the principles of communication at chemical synapses. Following groundbreaking experiments carried out over 60 years ago, many studies have focused on the molecular mechanisms underlying the development and physiology of these synapses. This Review summarizes the progress made to date towards obtaining faithful models of NMJs in vitro. We provide a historical approach discussing initial experiments investigating NMJ development and function from Xenopus to mice, the creation of chimeric co-cultures, in vivo approaches and co-culture methods from ex vivo and in vitro derived cells, as well as the most recent developments to generate human NMJs. We discuss the benefits of these techniques and the challenges to be addressed in the future for promoting our understanding of development and human disease.


Sign in / Sign up

Export Citation Format

Share Document