scholarly journals Inositol and Phosphatidylinositol Mediated Glucose Derepression, Gene Expression and Invertase Secretion in Yeasts

2004 ◽  
Vol 36 (7) ◽  
pp. 443-449 ◽  
Author(s):  
Zhen-Ming Chi ◽  
Jun-Feng Li ◽  
Xiang-Hong Wang ◽  
Shu-Min Yao

Abstract Glucose repression occurs in many yeast species and some filamentous fungi, and it represses the expression and secretion of many intracellular and extracellular proteins. In recent years, it has been found that many biochemical reactions in yeast cells are mediated by phosphatidylinositol (PI)-type signaling pathway. However, little is known about the relationships between PI-type signaling and glucose repression, gene expression and invertase secretion in yeasts. Many evidences in our previous studies showed that glucose repression, invertase secretion, gene expression and cell growth were mediated by inositol and PI in Saccharomyces and Schizosaccharomyces. The elucidation of the new regulatory mechanisms of protein secretion, gene expression and glucose repression would be an entirely new aspect of inositol and PI-type signaling regulation in yeasts.

2005 ◽  
Vol 71 (5) ◽  
pp. 2737-2747 ◽  
Author(s):  
Andrew H. Sims ◽  
Manda E. Gent ◽  
Karin Lanthaler ◽  
Nigel S. Dunn-Coleman ◽  
Stephen G. Oliver ◽  
...  

ABSTRACT Filamentous fungi have a high capacity for producing large amounts of secreted proteins, a property that has been exploited for commercial production of recombinant proteins. However, the secretory pathway, which is key to the production of extracellular proteins, is rather poorly characterized in filamentous fungi compared to yeast. We report the effects of recombinant protein secretion on gene expression levels in Aspergillus nidulans by directly comparing a bovine chymosin-producing strain with its parental wild-type strain in continuous culture by using expressed sequence tag microarrays. This approach demonstrated more subtle and specific changes in gene expression than those observed when mimicking the effects of protein overproduction by using a secretion blocker. The impact of overexpressing a secreted recombinant protein more closely resembles the unfolded-protein response in vivo.


2015 ◽  
Author(s):  
Andrew C Bergen ◽  
Gerilyn M Olsen ◽  
Justin C Fay

Qualitative patterns of gene activation and repression are often conserved despite an abundance of quantitative variation in expression levels within and between species. A major challenge to interpreting patterns of expression divergence is knowing which changes in gene expression affect fitness. To characterize the fitness effects of gene expression divergence we placed orthologous promoters from eight yeast species upstream of malate synthase (MLS1) in Saccharomyces cerevisiae. As expected, we found these promoters varied in their expression level under activated and repressed conditions as well as in their dynamic response following loss of glucose repression. Despite these differences, only a single promoter driving near basal levels of expression caused a detectable loss of fitness. We conclude that the MLS1 promoter lies on a fitness plateau whereby even large changes in gene expression can be tolerated without a substantial loss of fitness.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Anuj Kumar

Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xuesong Han ◽  
Yanfeng Zhuang ◽  
Zhihong Zhang ◽  
Lin Guo ◽  
Wanming Wang

This study is aimed at exploring the effect of stress stimulation on the proliferation and differentiation of fibrochondrocytes in entheses mediated via the Indian hedgehog (Ihh)/parathyroid hormone-related protein (PTHrP) signaling pathway. Differential stress stimulation on fibrochondrocytes in entheses was imposed. Gene expression and protein levels of signaling molecules including collagen type I (Col I), Col II, Col X, Ihh, and PTHrP in the cytoplasm of fibrochondrocytes were detected. Ihh signal blocking group was set up using Ihh signaling pathway-specific blocking agent cyclopamine. PTHrP enhancement group was set up using PTHrP reagent. Ihh/PTHrP double intervention group, as well as control group, was included to study the regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes. Under low cyclic stress tensile (CTS), PTHrP, Col I, and Col II gene expression and protein synthesis increased. Under high CTS, Ihh and Col X gene expression and protein synthesis increased. Blocking Ihh signaling with cyclopamine resulted in reduced PTHrP gene expression and protein synthesis and increased Col X gene expression and protein synthesis. Ihh and PTHrP coregulate fibrochondrocyte proliferation and differentiation in entheses through negative feedback regulation. Fibrochondrocyte is affected by the CTS. This phenomenon is regulated by stress stimulation through the Ihh/PTHrP signaling pathway.


2021 ◽  
Author(s):  
Genevieve S. Dobihal ◽  
Josué Flores-Kim ◽  
Ian J. Roney ◽  
Xindan Wang ◽  
David Z. Rudner

The WalR-WalK two component signaling system in Bacillus subtilis functions in the homeostatic control of the peptidoglycan (PG) hydrolases LytE and CwlO that are required for cell growth. When the activities of these enzymes are low, WalR activates transcription of lytE and cwlO and represses transcription of iseA , a secreted inhibitor of LytE. Conversely, when PG hydrolases activity is too high, WalR-dependent expression of lytE and cwlO is reduced and iseA is de-repressed. In a screen for additional factors that regulate this signaling pathway, we discovered that over-expression of the membrane-anchored PG deacetylase PdaC increases WalR-dependent gene expression. We show that increased expression of PdaC, but not catalytic mutants, prevents cell wall cleavage by both LytE and CwlO, explaining the WalR activation. Importantly, the pdaC gene, like iseA , is repressed by active WalR. We propose that de-repression of pdaC when PG hydrolase activity is too high results in modification of the membrane-proximal layers of the PG, protecting the wall from excessive cleavage by the membrane-tethered CwlO. Thus, the WalR-WalK system homeostatically controls the levels and activities of both elongation-specific cell wall hydrolases. Importance: Bacterial growth and division requires a delicate balance between the synthesis and remodeling of the cell wall exoskeleton. How bacteria regulate the potentially autolytic enzymes that remodel the cell wall peptidoglycan remains incompletely understood. Here, we provide evidence that the broadly conserved WalR-WalK two-component signaling system homeostatically controls both the levels and activities of two cell wall hydrolases that are critical for cell growth.


Sign in / Sign up

Export Citation Format

Share Document