Rho kinase mediates transforming growth factor-β1-induced vasculogenic mimicry formation: involvement of the epithelial–mesenchymal transition and cancer stemness activity

2020 ◽  
Vol 52 (4) ◽  
pp. 411-420 ◽  
Author(s):  
Xue Zhang ◽  
Jigang Zhang ◽  
Heming Zhou ◽  
Gaolin Liu ◽  
Qin Li

Abstract Vasculogenic mimicry (VM), a newly defined pattern of tumor blood supply, has been identified in several malignant tumors, including hepatocellular carcinoma (HCC). Rho kinase (ROCK) plays an important role in various types of cancers. However, whether ROCK participates in transforming growth factor-β1 (TGF-β1)-induced VM formation is unclear. Here, we evaluated the role of ROCK in TGF-β1-induced VM formation in HCC. Our findings showed that the TGF-β1/ROCK signaling pathway is involved in VM formation by inducing the epithelial–mesenchymal transition. Furthermore, TGF-β1 and ROCK were found to play distinct roles in the cancer stem cell phenotype during VM formation. These results provide insights into potential antitumor therapies for inhibiting VM by targeting the TGF-β1/ROCK signaling pathway in HCC.

Author(s):  
Jun Shan Ruan ◽  
Huan Zhou ◽  
Lin Yang ◽  
Ling Wang ◽  
Zong Sheng Jiang ◽  
...  

Transforming growth factor-β1 (TGF-β1)-induced epithelial‐mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC) may contribute to tumor metastasis. TGF-β1-induced EMT in H1975 cells (a human NSCLC cell line) resulted in the adoption of mesenchymal responses that were predominantly mediated via the TGF-β1‐integrin signaling pathway. Ursolic acid has been previously reported to inhibit tumor growth and metastasis in several cancers. However, whether ursolic acid can attenuate TGF-β1-induced EMT in H1975 cells and its underlying mechanisms remain unknown. In this study, ursolic acid significantly attenuated the TGF-β1-induced decrease in E-cadherin level and elevated the level of N-cadherin. Furthermore, ursolic acid inhibited the mesenchymal-like responses in H1975 cells, including cell migration, invasion, and activity of matrix metallopeptidase (MMP)-2 and -9. Finally, our new findings provided evidence that ursolic acid could inhibit EMT in NSCLC through TGF-β1 signaling pathway-mediated integrin αVβ5 expression, and this might be the potential mechanism of resveratrol on the inhibition of invasion and metastases in NSCLC. We conclude that ursolic acid attenuated TGF-β1-induced EMT in H1975 cells and thus might be a promising therapeutic agent for treating NSCLC.


Biology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 84 ◽  
Author(s):  
Kim ◽  
Park ◽  
Kim ◽  
Leem ◽  
Park

Recent studies showed that melatonin, a well-known pineal hormone that modulates the circadian rhythm, exerts beneficial effects against liver fibrosis. However, mechanisms for its protective action against the fibrotic processes remain incompletely understood. Here, we aimed to explore the effects of the hormone on transforming growth factor-β1 (TGF-β1)-stimulated epithelial–mesenchymal transition (EMT) in AML12 hepatocytes. Pretreatment with melatonin dose-dependently reversed downregulation of an epithelial marker and upregulation of mesenchymal markers after TGF-β1 stimulation. Additionally, melatonin dose-dependently suppressed an increased phosphorylation of Smad2/3 after TGF-β1 treatment. Besides the canonical Smad signaling pathway, an increase in phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was also dose-dependently attenuated by melatonin. The suppressive effect of the hormone on EMT stimulated by TGF-β1 was not affected by luzindole, an antagonist of melatonin membrane receptors, suggesting that its membrane receptors are not required for the inhibitory action of melatonin. Moreover, melatonin suppressed elevation of intracellular reactive oxygen species (ROS) levels in TGF-β1-treated cells. Finally, TGF-β1-stimulated EMT was also inhibited by the antioxidant N-acetylcysteine. Collectively, these results suggest that melatonin prevents TGF-β1-stimulated EMT through suppression of Smad and mitogen-activated protein kinase signaling cascades by deactivating ROS-dependent mechanisms in a membrane receptor-independent manner.


2015 ◽  
Vol 25 (9) ◽  
pp. 1574-1581 ◽  
Author(s):  
Zhongxue Ye ◽  
Le Zhao ◽  
Jie Li ◽  
Wei Chen ◽  
Xu Li

ObjectiveMicroRNAs (miRs) are essential regulators of gene expression by suppressing translation or causing degradation of target mRNA. Growing evidence sheds light on the crucial roles of miR dysregulation in cancer development and progression. In this study, we focused on the role of miR-30d in transforming growth factor β1 (TGF-β1)–initiated epithelial-mesenchymal transition (EMT) in ovarian cancer cells.MethodsTransforming growth factor β1 (10 ng/mL) was used to initiate EMT in SKOV3 and 3AO cells. The expression of miR-30 family members was determined by quantitative real-time polymerase chain reaction. Messenger RNA and protein levels of E-cadherin, N-cadherin, vimentin, and Snail were detected by quantitative real-time polymerase chain reaction and Western blot, respectively. Cell migration and invasion capacities were evaluated by Transwell chamber assay. Luciferase activity assay was performed to verify the direct inhibition of Snail by miR-30d.ResultsMiR-30b, MiR-30c, and MiR-30d were down-regulated during TGF-β1–induced EMT in SKOV3 and 3AO ovarian cancer cells. Restoration of miR-30d by miR-30d mimic reversed TGF-β1–induced EMT phenotypes including the morphological changes, expression pattern of molecular markers (E-cadherin, N-cadherin), and migratory and invasive capabilities in ovarian cancer cells. Furthermore, Snail was identified as the direct target of miR-30d.ConclusionsOur results revealed that miR-30d functioned as a suppressor of ovarian cancer progression by decreasing Snail expression and thus blocking TGF-β1–induced EMT process, suggesting the potentiality of miR-30d analogs to be used as therapeutics for ovarian cancer.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199651
Author(s):  
Jie Yang ◽  
Enzi Feng ◽  
Yanxin Ren ◽  
Shun Qiu ◽  
Liufang Zhao ◽  
...  

Objectives To identify key long non-coding (lnc)RNAs responsible for the epithelial–mesenchymal transition (EMT) of CNE1 nasopharyngeal carcinoma cells and to investigate possible regulatory mechanisms in EMT. Methods CNE1 cells were divided into transforming growth factor (TGF)-β1-induced EMT and control groups. The mRNA and protein expression of EMT markers was determined by real-time quantitative PCR and western blotting. Differentially expressed genes (DEGs) between the two groups were identified by RNA sequencing analysis, and DEG functions were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. EMT marker expression was re-evaluated by western blotting after knockdown of a selected lncRNA. Results TGF-β1-induced EMT was characterized by decreased E-cadherin and increased vimentin, N-cadherin, and Twist expression at both mRNA and protein levels. Sixty lncRNA genes were clustered in a heatmap, and mRNA expression of 14 dysregulated lncRNAs was consistent with RNA sequencing. Knockdown of lnc-PNRC2-1 increased expression of its antisense gene MYOM3 and reduced expression of EMT markers, resembling treatment with the TGF-β1 receptor inhibitor LY2109761. Conclusion Various lncRNAs participated indirectly in the TGF-β1-induced EMT of CNE1 cells. Lnc-PNRC2-1 may be a key regulator of this and is a potential target to alleviate CNE1 cell EMT.


2021 ◽  
Vol 19 (4) ◽  
pp. 501-507
Author(s):  
Yunhe Gu ◽  
Peiyao Guo ◽  
Guangbiao Xu

Transforming growth factor-β1 promotes excessive extracellular matrix deposition and epithelial-mesenchymal transition of tubular epithelial cells, thus stimulating the progression of renal fibrosis. Carvacrol has been shown to alleviate cardiac and liver fibrosis and attenuate renal injury. However, the role of carvacrol on renal fibrosis has not been examined. First, measurements using Cell Counting Kit-8 showed that carvacrol reduced cell viability of tubular epithelial cell line HK-2 in a dose-dependent fashion. Second, transforming growth factor-β1 induced excessive extracellular matrix deposition in HK-2 cells with enhanced collagen I, collagen IV, and fibronectin expression. However, carvacrol decreased the expression of collagen I, collagen IV in a dose-dependent manner and fibronectin to attenuate the extracellular matrix deposition in HK-2. Third, carvacrol attenuated TGF-β1-induced decrease of E-cadherin and increase of snail, vimentin, and alpha-smooth muscle actin in HK-2 cells. Transforming growth factor-β1-induced increase in PI3K and AKT phosphorylation in HK-2 were also reversed by carvacrol. Collectively, carvacrol ameliorates renal fibrosis through inhibition of transforming growth factor-β1-induced extracellular matrix deposition and epithelial-mesenchymal transition of HK-2 cells, providing potential therapy for the treatment of renal fibrosis.


2017 ◽  
Vol 32 (4) ◽  
pp. 224-227 ◽  
Author(s):  
Masashi Kawami ◽  
Junya Deguchi ◽  
Ryoko Yumoto ◽  
Norikazu Sakakibara ◽  
Ikuko Tsukamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document