scholarly journals miR-223-3p promotes cell proliferation and invasion by targeting Arid1a in gastric cancer

2020 ◽  
Vol 52 (2) ◽  
pp. 150-159 ◽  
Author(s):  
Yiping Zhu ◽  
Kai Li ◽  
Liang Yan ◽  
Yang He ◽  
Lu Wang ◽  
...  

Abstract Accumulating evidence has indicated that microRNAs can regulate downstream signaling pathways and play an important role in various tumors. In this study, we found that miR-223-3p was differentially expressed in 40 paired gastric cancer tissues and adjacent tissues and that miR-223-3p was positively correlated with tumor invasion depth and lymph node metastasis. Luciferase reporter assay confirmed that Arid1a was the target gene of miR-223-3p. Functional assays showed that miR-223-3p promoted the proliferation and invasion of gastric cancer cells by regulating the expression of Arid1a. We also confirmed that miR-223-3p regulated the growth of gastric cancer cells in vivo, while an antagomir against miR-223-3p significantly inhibited tumor growth. In conclusion, our results demonstrated that miR-223-3p inhibits gastric cancer cell progression by decreasing the expression of Arid1a. Therefore, miR-223-3p may act as a potential therapeutic target for patients with gastric cancer.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yixun Lu ◽  
Benlong Zhang ◽  
Baohua Wang ◽  
Di Wu ◽  
Chuang Wang ◽  
...  

Abstract Background Gastric cancer (GC) is the fifth most commonly diagnosed cancer worldwide. Due to the dismal prognosis, identifying novel therapeutic targets in GC is urgently needed. Evidences have shown that miRNAs played critical roles in the regulation of tumor initiation and progression. GLI family zinc finger 2 (GLI2) has been reported to be up-regulated and facilitate cancer progression in multiple malignancies. In this study, we focused on identifying GLI2-targeted miRNAs and clarifying the underlying mechanism in GC. Methods Paired fresh gastric cancer tissues were collected from gastrectomy patients. GLI2 and miRNAs expression were detected in gastric cancer tissues and cell lines. Bioinformatics analysis was used to predict GLI2-targeted miRNAs and dual-luciferase reporter assay was applied for target verification. CCK-8, clone formation, transwell and flow cytometry were carried out to determine the proliferation, migration, invasion and cell cycle of gastric cancer cells. Tumorsphere formation assay and flow cytometry were performed to detail the stemness of gastric cancer stem cells (GCSCs). Xenograft models in nude mice were established to investigate the role of the miR-144-3p in vivo. Results GLI2 was frequently upregulated in GC and indicated a poor survival. Meanwhile, miR-144-3p was downregulated and negatively correlated with GLI2 in GC. GLI2 was a direct target gene of miR-144-3p. MiR-144-3p overexpression inhibited proliferation, migration and invasion of gastric cancer cells. Enhanced miR-144-3p expression inhibited tumorsphere formation and CD44 expression of GCSCs. Restoration of GLI2 expression partly reversed the suppressive effect of miR-144-3p. Xenograft assay showed that miR-144-3p could inhibit the tumorigenesis of GC in vivo. Conclusions MiR-144-3p was downregulated and served as an essential tumor suppressor in GC. Mechanistically, miR-144-3p inhibited gastric cancer progression and stemness by, at least in part, regulating GLI2 expression.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Peng Deng ◽  
Kai Li ◽  
Feng Gu ◽  
Tao Zhang ◽  
Wenyan Zhao ◽  
...  

Abstract Background Reprogrammed glucose metabolism of enhanced Warburg effect (or aerobic glycolysis) is considered as a hallmark of cancer. Long non-coding RNAs (lncRNAs) have been certified to play a crucial role in tumor progression. The current study aims to inquire into the potential regulatory mechanism of long intergenic non-protein coding RNA 242 (LINC00242) on aerobic glycolysis in gastric cancer. Method LINC00242, miR-1-3p and G6PD expression levels in gastric cancer tissues and cells were determined by qRT-PCR. Cell apoptosis or viability were examined by Flow cytometry or MTT assay. Western blot was utilized to investigate G6PD protein expression levels. Immunohistochemical (IHC) and hematoxylin and eosin (H&E) staining were used for histopathological detection. The targeted relationship between LINC00242 or G6PD and miR-1-3p was verified by luciferase reporter gene assay. Nude mouse xenograft was utilized to detect tumor formation in vivo. Result LINC00242 and G6PD was high-expressed in gastric cancer tissues and cells, and LINC00242 is positively correlated with G6PD. Silencing of LINC00242 or G6PD within gastric cancer cells prominently inhibited cell proliferation and aerobic glycolysis in vitro and relieved the tumorigenesis of gastric cancer in vivo. miR-1-3p was predicted to directly target both LINC00242 and G6PD. Overexpression of miR-1-3p suppressed gastric cancer cells proliferation and aerobic glycolysis. LINC00242 competitively combined miR-1-3p, therefore relieving miR-1-3p-mediated suppression on G6PD. Conclusion LINC00242 plays a stimulative role in gastric cancer aerobic glycolysis via regulation of miR-1-3p/ G6PD axis, therefore affecting gastric cancer cell proliferation.


Author(s):  
Jifu Song ◽  
Zhibin Guan ◽  
Maojiang Li ◽  
Sha Sha ◽  
Chao Song ◽  
...  

MicroRNAs (miRNAs) have emerged as pivotal regulators of the development and progression of gastric cancer. Studies have shown that miR-154 is a novel cancer-associated miRNA involved in various cancers. However, the role of miR-154 in gastric cancer remains unknown. Here we aimed to investigate the biological function and the potential molecular mechanism of miR-154 in gastric cancer. We found that miR-154 was significantly downregulated in gastric cancer tissues and cell lines. The overexpression of miR-154 significantly repressed the growth and invasion of gastric cancer cells. Bioinformatics analysis and Dual-Luciferase Reporter Assay data showed that miR-154 directly targeted the 3′-untranslated region of Dishevelled‐Axin domain containing 1 (DIXDC1). Real-time quantitative polymerase chain reaction and Western blot analyses showed that miR-154 overexpression inhibited DIXDC1 expression. An inverse correlation of miR-154 and DIXDC1 was also demonstrated in gastric cancer specimens. Overexpression of miR-154 also significantly suppressed the activation of WNT signaling. Moreover, restoration of DIXDC1 expression significantly reversed the inhibitory effect of miR-154 overexpression on the cell proliferation, invasion, and WNT signaling in gastric cancer cells. Overall, these results suggest that miR-154 inhibits gastric cancer cell growth and invasion by targeting DIXDC1 and could serve as a potential therapeutic target for the treatment of gastric cancer.


Author(s):  
Chunsheng Li ◽  
Jingrong Dong ◽  
Zhenqi Han ◽  
Kai Zhang

MicroRNAs (miRNAs) are reportedly involved in gastric cancer development and progression. In particular, miR-219-5p has been reported to be a tumor-associated miRNA in human cancer. However, the role of miR-219-5p in gastric cancer remains unclear. In this study, we investigated for the first time the potential role and underlying mechanism of miR-219-5p in the proliferation, migration, and invasion of human gastric cancer cells. miR-219-5p was found to be markedly decreased in gastric cancer tissues and cell lines compared with adjacent tissues and normal gastric epithelial cells. miR-219-5p mimics or anti-miR-219-5p was transfected into gastric cancer cell lines to overexpress or suppress miR-219-5p expression, respectively. Results showed that miR-219-5p overexpression significantly decreased the proliferation, migration, and invasion of gastric cancer cells. Conversely, miR-219-5p suppression demonstrated a completely opposite effect. Bioinformatics and luciferase reporter assays indicated that miR-219-5p targeted the 3′-untranslated region of the liver receptor homolog-1 (LRH-1), a well-characterized oncogene. Furthermore, miR-219-5p inhibited the mRNA and protein levels of LRH-1. LRH-1 mRNA expression was inversely correlated with miR-219-5p expression in gastric cancer tissues. miR-219-5p overexpression significantly decreased the Wnt/β-catenin signaling pathway in gastric cancer cells. Additionally, LRH-1 restoration can markedly reverse miR-219-5p-mediated tumor suppressive effects. Our study suggests that miR-219-5p regulated the proliferation, migration, and invasion of human gastric cancer cells by suppressing LRH-1. miR-219-5p may be a potential target for gastric cancer therapy.


2016 ◽  
Vol 0 (0) ◽  
Author(s):  
Min Yang ◽  
Nan Jiang ◽  
Qi-wei Cao ◽  
Qing Sun

Abstract Gastric cancer is the most common digestive malignant tumor worldwild. EDD1 was reported to be frequently amplified in several tumors and played an important role in the tumorigenesis process. However, the biological role and potential mechanism of EDD1 in gastric cancer remains poorly understood. In this study, we are aim to investigate the effect of EDD1 on gastric cancer progression and to explore the underlying mechanism. The results showed the significant up-regulation of EDD1 in -gastric cancer cell tissues and lines. The expression level of EDD1 was also positively associated with advanced clinical stages and predicted poor overall patient survival and poor disease-free patient survival. Besides, EDD1 knockdown markedly inhibited cell viability, colony formation, and suppressed tumor growth. Opposite results were obtained in gastric cancer cells with EDD1 overexpression. EDD1 knockdown was also found to induce gastric cancer cells apoptosis. Further investigation indicated that the oncogenic role of EDD1 in regulating gastric cancer cells growth and apoptosis was related to its PABC domain and directly through targeting miR-22, which was significantly down-regulated in gastric cancer tissues. Totally, our study suggests that EDD1 plays an oncogenic role in gastric cancer and may be a potential therapeutic target for gastric cancer.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 53-53
Author(s):  
Mitsuro Kanda ◽  
Haruyoshi Tanaka ◽  
Takashi Miwa ◽  
Daisuke Kobayashi ◽  
Chie Tanaka ◽  
...  

53 Background: Hepatic metastasis of gastric cancer has become a growing issue, because effective treatment and specific biomarkers are not available. The aim of this study was to identify a molecule mediating hepatic metastasis, which serves as a diagnostic marker, and to determine its potential as a therapeutic target. Methods: Stable knockdown gastric cancer cells were established using genome editing technique and cell activities were compared to control cells in vitro and in vivo. Tissue expression levels of the candidate molecule were evaluated in 300 patients with gastric cancer and correlated to clinicopathological parameters including patterns of metastasis and recurrences. Results: Global expression analysis revealed that synaptotagmin VII (SYT7) was overexpressed in gastric cancer tissues with hepatic metastasis. Gastric cancer cell lines differentially expressed high levels of SYT7 that positively correlated with those of SNAI1 and TGFB3, and inversely with RGS2. Stable knockout of SYT7 inhibited the proliferation of gastric cancer cells, indicated by increased apoptosis, and decreased cell migration, invasion, and adhesion abilities. The tumorigenicity of SYT7 knockout cells was moderately reduced in a mouse subcutaneous model and more strikingly decreased in a hepatic metastasis model. The protein expression levels of BCL2 and HIF1A were decreased in tumors formed by SYT7 knockout cells, and SYT7 levels in primary gastric cancer tissues were significantly associated with hepatic recurrence, metastasis, and adverse prognosis. Conclusions: SYT7 serves as a target for treating hepatic metastasis of gastric cancer as well as a diagnostic tool.


2021 ◽  
Author(s):  
Xing Kang ◽  
en xu ◽  
Xingzhou wang ◽  
Lulu Qian ◽  
Zhi Yang ◽  
...  

Abstract BackgroundGastric cancer is one of the most common malignancies worldwide and vasculogenic mimicry (VM) is considered to be the leading cause for the failure of anti-angiogenesis therapy in advanced gastric cancer patients. Tenascin-c (TNC) plays a pivotal role in VM. Thus, we explored the role of TNC in VM formation in gastric cancer.MethodsGastric cancer tissues and corresponding adjacent tissues were collected from gastric cancer patients after surgery. We used western blot and immunohistochemistry to examine the expression of TNC in tissues and used siRNA and lentivirus to knockdown the TNC expression in gastric cancer cell lines. Then three-dimensional culturing, CCK-8, Edu assay, flow cytometry, trasnwell and pseudopodia formation assay were used to evaluate the function of TNC in gastric cancer cells and bioinformatic prediction was used to explore the mechanism underlying TNC modulating the VM in gastric cancer. Xenograft and peritoneal dissemination model were used to further explore the role of TNC in vivo.ResultsIn this study, we demonstrated that TNC was highly expressed in gastric cancer tissues and correlated with poor prognosis of gastric cancer. Furthermore, knockdown of TNC significantly inhibited VM formation and proliferation of gastric cancer cells in vitro and in vivo, with a reduction in cell migration and invasion. Mechanistically, TNC knockdown suppressed the phosphorylation of ERK and subsequently inhibited the process of EMT, both of which play an important role in VM formation. What’s more, rescue experiments showed that activation of p-ERK could reverse the suppressive role of TNC knockdown in gastric cancer cells.ConclusionsTNC plays an important role in VM formation in gastric cancer. Combining inhibition of TNC and ERK may be a potential therapeutic approach to inhibit gastric cancer growth and metastasis and decrease anti-angiogenic therapeutic resistance.


2021 ◽  
Vol 67 (2) ◽  
pp. 161-165
Author(s):  
Yun Dai ◽  
Guangming Yang ◽  
Lie Yang ◽  
Li Jiang ◽  
Guohua Zheng ◽  
...  

Forkhead box (FOX) transcription factors regulate the development of several human cancers. However, the role and therapeutic potential of FOXA1 in gastric cancer is still largely unexplored. The results showed a significant (P < 0.05) upregulation of FOXA1 in gastric cancer tissues and cell lines. Silencing of FOXA1 in gastric cells significantly (P < 0.05) decreased their viability through induction of apoptosis. The induction of apoptosis was associated with upregulation of Bax and downregulation of Bcl-2. Additionally, FOXA1 silencing caused activation of caspase-3 and 9 with no apparent effects on the expression of caspase-8 suggestive of intrinsic apoptosis. The transwell cell invasion revealed significant (P < 0.05) decline of cell invasion of gastric cancer cells upon FOXA1 silencing. The FOXA1 knockdown further inhibited the in vivo tumor growth suggestive of its therapeutic potential. Taken together, the findings of the present revealed that FOXA1 regulates the proliferation and development of gastric cancer and may exhibit therapeutic implications in gastric cancer treatment.


2020 ◽  
Author(s):  
Lu Jin ◽  
Zhiwei He ◽  
Changhao Zhu ◽  
Guoliang Xiao ◽  
Xianjin Yang ◽  
...  

Abstract Background: CircRNA is a new type of non-coding RNA that has attracted much attention for involvement in the development and progression of various human diseases, especially cancer. The most reported role of circRNA in many tumors is ‘MiRNA sponge’. We aimed to investigate the role of circBVES in the proliferation and glycolysis of gastric cancer cells and its molecular mechanisms.Methods: In this study, higher CircBVES expression in gastric cancer tissues was detected by RNA sequencing. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of CircBVES in gastric cancer tissues, and the relationship between the expression of CircBVES and prognosis was further analyzed. Then, the effects of CircBVES on the growth and glycolysis of gastric cancer cells were investigated through in vitro and in vivo functional experiments. The interaction between CircBVES and miR-145-5p was detected by bioinformatics analysis, luciferase activity assay and RNA immunoprecipitation.Results: We found that the expression of CircBVES in gastric cancer tissues was evidently up-regulated, and its level was closely correlated with the prognosis of patients with gastric cancer. Inhibition of CircBVES decreased cell proliferation and glycolysis in vitro. Low expression of CircBVES inhibited tumor growth in vivo. Mechanism analysis showed that CircBVES may serve as a competitive endogenous RNA of miR-145-5p to reduce the expression of miR-145-5p in gastric cancer cells, and relieve the repressive effect of miR-145-5p on target genes HMGB3 and cycle-related proteins CCNE1 and CDK2.Conclusions: Our results suggest that CircAGFG1 may promote the progress of gastric cancer through the CircBVES / miR-145-5p / HMGB3 axis, providing a new target for the treatment of gastric cancer cells.


2017 ◽  
Vol 41 (3) ◽  
pp. 907-920 ◽  
Author(s):  
Jing Li ◽  
Lujun Chen ◽  
Yuqi Xiong ◽  
Xiao Zheng ◽  
Quanqin Xie ◽  
...  

Background/Abstract: PD-L1 has been an important target of cancer immunotherapy. We have showed that in human gastric cancer tissues, over-expression of PD-L1 was significantly associated with cancer progression and patients’ postoperative prognoses. However, as of now, how PD-L1 regulates the biological function of gastric cancer cells still remains elusive. Methods: We constructed the stable PD-L1 knockdown expression gastric cancer cell lines by using RNAi method, and further investigated the changes of biological functions including cell viability, migration, invasion, cell cycle, apoptosis, tumorigenicity in vivo, and the cytotoxic sensitivity to CIK therapy, in contrast to the control cells. Results: In the current study, we demonstrated that the knockdown of PD-L1 expression in human gastric cancer cells could significantly suppress the cell proliferation, migration, invasion, apoptosis, cell cycle, tumorigenicity in vivo and the cytotoxic sensitivity to CIK therapy. Conclusion: Our results indicate that PD-L1 contributes towards transformation and progression of human gastric cancer cells, and its intervention could prove to be an important therapeutic strategy against gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document