History and Importance of Mountain Observatories in Alpine Climate

Author(s):  
Elke Ludewig

Mountain observatories have played an important role in developing scientific research since the 18th century. These alpine observatories have been used by numerous scientists who have carried out a wide range of investigations, and have thus been able to establish significant meteorological findings. They were established to better understand atmospheric properties, such as dynamics, and are now used for climate and environmental science in addition to astronomy. The data measured at mountain observatories provide information on the climatic conditions of certain alpine regions and show that even more high-altitude stations are needed to better understand climatic and environmental changes in the 21st century.

1970 ◽  
Vol 1 (1) ◽  
pp. i-iv
Author(s):  
A K M A Islam

Journal of Scientific Research EDITORIAL Do we need a new journal? The answer lies in the fact that currently no international journal (online and print) with interdisciplinary character which specifically caters to the academic needs of the international community operates from Bangladesh. This journal aims to fill this lacuna and to be a bridge for the scientists from the east and the west. This is the first issue of the Journal of Scientific Research (JSR). The idea of launching a journal that hopes to publish quality scientific works was planted in early 2008 during a science faculty meeting at Rajshahi University. Now it is our pleasure to see the idea blossom into the first issue of first volume (1 January 2009) that contains scientific work not only of Asian regions but of much beyond that. The inaugural issue indicates the type of journal we hope to become. It is wide ranging and interdisciplinary. Our contributors include scholars at every stage of their academic career. As regards editorial policy and scope the Journal of Scientific Research is a peer-reviewed international journal originally intended for publication annually. But due to a satisfactory flow of manuscripts since the first announcements the publication frequency has now been increased to 3 online issues (one print volume) per year.The journal is a unifying force, going across the barriers between disciplines, addressing all related topics and materials. An international Editorial Board (along with an Advisory Board) comprising of renowned academics from various fields guides our editorial policy and direction. The journal is devoted to the publication of original research (research paper, review paper, short communication) covering the following fields:Section A:  Physical and Mathematical Sciences: Physics, Mathematics, Statistics, Geophysics, Computer, Environmental Science, Communications and Information Technology, Engineering and related branches.Section B:  Chemical and Biological Sciences: Chemistry, Biochemistry, Pharmacy, Biology, Genetics, Fisheries and related branches.The articles selected for the first issue have been reviewed by two discipline-specialists, and their recommendations have been appropriately incorporated. Submissions from the world research community are encouraged to fulfill our mission and aim for the journal to stand for the international scientific publishing standards.    It was clear during the planning and development of this first issue that the Asian region needs a forum through which research could be shared and acknowledged. I hope that this journal will soon be recognised by the wider research community as their forum for the dissemination of knowledge. We hope that the journal will not simply act as a place for publication of material, though obviously this is important, but should act as a catalyst for the advancement of science both within and outside the region.The journal is being published both online and in print. Online publishing, unique in nature, is faster and far less expensive than traditional hard copy publishing. Access of online journals is easier and better images, storage and multimedia are other advantages. I must thank the International Network for the availability of Scientific Publications (INASP) for helping us publish via BanglaJOL – and the help of Ms. Sioux Cumming in this regard is worthy of mention.The success of a journal depends on the quality of its Editorial Board and the reviewers. The effort that I have seen from them speaks well for the future of the new born journal.  Both the Editorial and Advisory Boards should deserve thanks for their indispensable advice and support during the planning phases of the journal. I should also thank the reviewers who contributed their valuable time to complete reviews within a reasonable time. I truly hope that the diversity contained in this first issue of the journal will be the hallmark of future issues. A K M A Islam email: [email protected]  website: www.banglajol.info/index.php/JSR           © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.vlil.1703    


2004 ◽  
Vol 155 (7) ◽  
pp. 284-289 ◽  
Author(s):  
Pietro Stanga ◽  
Niklaus Zbinden

The retrospective study based on aerial photos (1971–2001) of the Canton Tessin made it possible to measure and analyze the evolution of the vegetation of eleven Alpine zones. The analysis shows a strong expansion of the arborescent vegetation and, at the same time, a decrease in other forms of ground cover (bush, shrub, meadow and unproductive spaces). Analysis of the data gives rise to the conjecture that the strong evolutionary dynamism evidenced by the areas under investigation is a result of the vast clearings carried out in past centuries to create pastures. Following the subsequent decrease in human pressure, nature today is attempting to rebalance the level of the biomass. These processes manifest themselves in different ways and with various intensity, depending on the interaction of numerous factors (e.g. climatic conditions, site fertility, initial conditions, evolution of anthropological pressure, etc.).


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1192
Author(s):  
Francesco Tini ◽  
Giovanni Beccari ◽  
Gianpiero Marconi ◽  
Andrea Porceddu ◽  
Micheal Sulyok ◽  
...  

DNA methylation mediates organisms’ adaptations to environmental changes in a wide range of species. We investigated if a such a strategy is also adopted by Fusarium graminearum in regulating virulence toward its natural hosts. A virulent strain of this fungus was consecutively sub-cultured for 50 times (once a week) on potato dextrose agar. To assess the effect of subculturing on virulence, wheat seedlings and heads (cv. A416) were inoculated with subcultures (SC) 1, 23, and 50. SC50 was also used to re-infect (three times) wheat heads (SC50×3) to restore virulence. In vitro conidia production, colonies growth and secondary metabolites production were also determined for SC1, SC23, SC50, and SC50×3. Seedling stem base and head assays revealed a virulence decline of all subcultures, whereas virulence was restored in SC50×3. The same trend was observed in conidia production. The DNA isolated from SC50 and SC50×3 was subject to a methylation content-sensitive enzyme and double-digest, restriction-site-associated DNA technique (ddRAD-MCSeEd). DNA methylation analysis indicated 1024 genes, whose methylation levels changed in response to the inoculation on a healthy host after subculturing. Several of these genes are already known to be involved in virulence by functional analysis. These results demonstrate that the physiological shifts following sub-culturing have an impact on genomic DNA methylation levels and suggest that the ddRAD-MCSeEd approach can be an important tool for detecting genes potentially related to fungal virulence.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 209
Author(s):  
Luiza Tymińska-Czabańska ◽  
Jarosław Socha ◽  
Marek Maj ◽  
Dominika Cywicka ◽  
Xo Viet Hoang Duong

Site productivity provides critical information for forest management practices and is a fundamental measure in forestry. It is determined using site index (SI) models, which are developed using two primary groups of methods, namely, phytocentric (plant-based) or geocentric (earth-based). Geocentric methods allow for direct site growth modelling, in which the SI is predicted using multiple environmental indicators. However, changes in non-static site factors—particularly nitrogen deposition and rising CO2 concentration—lead to an increase in site productivity, which may be visible as an age trend in the SI. In this study, we developed a geocentric SI model for oak. For the development of the SI model, we used data from 150 sample plots, representing a wide range of local topographic and site conditions. A generalized additive model was used to model site productivity. We found that the oak SI depended predominantly on physicochemical soil properties—mainly nitrogen, carbon, sand, and clay content. Additionally, the oak SI value was found to be slightly shaped by the topography, especially by altitude above sea level, and topographic position. We also detected a significant relationship between the SI and the age of oak stands, indicating the long-term increasing site productivity for oak, most likely caused by nitrogen deposition and changes in climatic conditions. The developed geocentric site productivity model for oak explained 77.2% of the SI variation.


2021 ◽  
Vol 11 (4) ◽  
pp. 1431
Author(s):  
Sungsik Wang ◽  
Tae Heung Lim ◽  
Kyoungsoo Oh ◽  
Chulhun Seo ◽  
Hosung Choo

This article proposes a method for the prediction of wide range two-dimensional refractivity for synthetic aperture radar (SAR) applications, using an inverse distance weighted (IDW) interpolation of high-altitude radio refractivity data from multiple meteorological observatories. The radio refractivity is extracted from an atmospheric data set of twenty meteorological observatories around the Korean Peninsula along a given altitude. Then, from the sparse refractive data, the two-dimensional regional radio refractivity of the entire Korean Peninsula is derived using the IDW interpolation, in consideration of the curvature of the Earth. The refractivities of the four seasons in 2019 are derived at the locations of seven meteorological observatories within the Korean Peninsula, using the refractivity data from the other nineteen observatories. The atmospheric refractivities on 15 February 2019 are then evaluated across the entire Korean Peninsula, using the atmospheric data collected from the twenty meteorological observatories. We found that the proposed IDW interpolation has the lowest average, the lowest average root-mean-square error (RMSE) of ∇M (gradient of M), and more continuous results than other methods. To compare the resulting IDW refractivity interpolation for airborne SAR applications, all the propagation path losses across Pohang and Heuksando are obtained using the standard atmospheric condition of ∇M = 118 and the observation-based interpolated atmospheric conditions on 15 February 2019. On the terrain surface ranging from 90 km to 190 km, the average path losses in the standard and derived conditions are 179.7 dB and 182.1 dB, respectively. Finally, based on the air-to-ground scenario in the SAR application, two-dimensional illuminated field intensities on the terrain surface are illustrated.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 686
Author(s):  
Maria Concetta Geloso ◽  
Nadia D’Ambrosi

Microglia, besides being able to react rapidly to a wide range of environmental changes, are also involved in shaping neuronal wiring. Indeed, they actively participate in the modulation of neuronal function by regulating the elimination (or “pruning”) of weaker synapses in both physiologic and pathologic processes. Mounting evidence supports their crucial role in early synaptic loss, which is emerging as a hallmark of several neurodegenerative diseases, including multiple sclerosis (MS) and its preclinical models. MS is an inflammatory, immune-mediated pathology of the white matter in which demyelinating lesions may cause secondary neuronal death. Nevertheless, primitive grey matter (GM) damage is emerging as an important contributor to patients’ long-term disability, since it has been associated with early and progressive cognitive decline (CD), which seriously worsens the quality of life of MS patients. Widespread synapse loss even in the absence of demyelination, axon degeneration and neuronal death has been demonstrated in different GM structures, thus raising the possibility that synaptic dysfunction could be an early and possibly independent event in the neurodegenerative process associated with MS. This review provides an overview of microglial-dependent synapse elimination in the neuroinflammatory process that underlies MS and its experimental models.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 931
Author(s):  
Mona Giraud ◽  
Jannis Groh ◽  
Horst H. Gerke ◽  
Nicolas Brüggemann ◽  
Harry Vereecken ◽  
...  

Grasslands are one of the most common biomes in the world with a wide range of ecosystem services. Nevertheless, quantitative data on the change in nitrogen dynamics in extensively managed temperate grasslands caused by a shift from energy- to water-limited climatic conditions have not yet been reported. In this study, we experimentally studied this shift by translocating undisturbed soil monoliths from an energy-limited site (Rollesbroich) to a water-limited site (Selhausen). The soil monoliths were contained in weighable lysimeters and monitored for their water and nitrogen balance in the period between 2012 and 2018. At the water-limited site (Selhausen), annual plant nitrogen uptake decreased due to water stress compared to the energy-limited site (Rollesbroich), while nitrogen uptake was higher at the beginning of the growing period. Possibly because of this lower plant uptake, the lysimeters at the water-limited site showed an increased inorganic nitrogen concentration in the soil solution, indicating a higher net mineralization rate. The N2O gas emissions and nitrogen leaching remained low at both sites. Our findings suggest that in the short term, fertilizer should consequently be applied early in the growing period to increase nitrogen uptake and decrease nitrogen losses. Moreover, a shift from energy-limited to water-limited conditions will have a limited effect on gaseous nitrogen emissions and nitrate concentrations in the groundwater in the grassland type of this study because higher nitrogen concentrations are (over-) compensated by lower leaching rates.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2016 ◽  
Vol 48 (3) ◽  
pp. 726-740 ◽  
Author(s):  
Daniele Masseroni ◽  
Alessio Cislaghi ◽  
Stefania Camici ◽  
Christian Massari ◽  
Luca Brocca

Many rainfall–runoff (RR) models are available in the scientific literature. Selecting the best structure and parameterization for a model is not straightforward and depends on a broad number of factors, including climatic conditions, catchment characteristics, temporal/spatial resolution and model objectives. In this study, the RR model ‘Modello Idrologico Semi-Distribuito in continuo’ (MISDc), mainly developed for flood simulation in Mediterranean basins, was tested on the Seveso basin, which is stressed several times a year by flooding events mainly caused by excessive urbanization. The work summarizes a compendium of the MISDc applications over a wide range of catchments in European countries and then it analyses the performances over the Seveso basin. The results show a good fit behaviour during both the calibration and the validation periods with a Nash–Sutcliffe coefficient index larger than 0.9. Moreover, the median volume and peak discharge errors calculated on several flood events were less than 25%. In conclusion, we can be assured that the reliability and computational speed could make the MISDc model suitable for flood estimation in many catchments of different geographical contexts and land use characteristics. Moreover, MISDc will also be useful for future support of real-time decision-making for flood risk management in the Seveso basin.


Sign in / Sign up

Export Citation Format

Share Document