7. Intertidal life

Author(s):  
Philip V. Mladenov

The intertidal region of the Global Ocean is a thin strip of shoreline lying between the high and low tide marks; it is completely submerged by seawater at the highest high tides and completely uncovered at the lowest low tides. The intertidal region is occupied almost exclusively by marine organisms that have adapted to live in a very stressful physical environment influenced by exposure to air, temperature extremes, wind, and the pounding of waves. This region is home to a diverse and interesting marine community that is easy to study and enjoy due to its accessibility. It is also a place where people routinely harvest seafood, and is prone to a wide range of human impacts.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 369
Author(s):  
Pasqua Veronico ◽  
Maria Teresa Melillo

Plant parasitic nematodes are annually responsible for the loss of 10%–25% of worldwide crop production, most of which is attributable to root-knot nematodes (RKNs) that infest a wide range of agricultural crops throughout the world. Current nematode control tools are not enough to ensure the effective management of these parasites, mainly due to the severe restrictions imposed on the use of chemical pesticides. Therefore, it is important to discover new potential nematicidal sources that are suitable for the development of additional safe and effective control strategies. In the last few decades, there has been an explosion of information about the use of seaweeds as plant growth stimulants and potential nematicides. Novel bioactive compounds have been isolated from marine cyanobacteria and sponges in an effort to find their application outside marine ecosystems and in the discovery of new drugs. Their potential as antihelmintics could also be exploited to find applicability against plant parasitic nematodes. The present review focuses on the activity of marine organisms on RKNs and their potential application as safe nematicidal agents.


Author(s):  
Konstantinos-Georgios Glynis ◽  
Theano Iliopoulou ◽  
Panayiotis Dimitriadis ◽  
Demetris Koutsoyiannis

2020 ◽  
Vol 1008 ◽  
pp. 128-138
Author(s):  
Ahmed M. Salman ◽  
Ibrahim A. Ibrahim ◽  
Hamada M. Gad ◽  
Tharwat M. Farag

In the present study, the combustion characteristics of LPG gaseous fuel diffusion flame at elevated air temperatures were experimentally investigated. An experimental test rig was manufactured to examine a wide range of operating conditions. The investigated parameters are the air temperatures of 300, 350, 400, 450, and 500 K with constant percentage of nitrogen addition in combustion air stream of 5 % to give low oxygen concentration of 18.3 % by mass at constant air swirl number, air to fuel mass ratio, and thermal load of 1.5, 30, and 23 kW, respectively. The gaseous combustion characteristics were represented as axial and radial temperatures distributions, temperatures gradient, visible flame length and species concentrations. The results indicated that as the air temperature increased, the chemical reaction rate increased and flame volume decreased, the combustion time reduced leading to a reduction in flame length. The NO concentration reaches its maximum values near the location of the maximum centerline axial temperature. Increasing the combustion air temperature by 200 K, the NO consequently O2 concentrations are increased by about % 355 and 20 % respectively, while CO2 and CO concentrations are decreased by about % 21 and 99 % respectively, at the combustor end.


2008 ◽  
Vol 14 ◽  
pp. 243-249 ◽  
Author(s):  
J. Kyselý ◽  
R. Huth

Abstract. Heat waves are among natural hazards with the most severe consequences for human society, including pronounced mortality impacts in mid-latitudes. Recent studies have hypothesized that the enhanced persistence of atmospheric circulation may affect surface climatic extremes, mainly the frequency and severity of heat waves. In this paper we examine relationships between the persistence of the Hess-Brezowsky circulation types conducive to summer heat waves and air temperature anomalies at stations over most of the European continent. We also evaluate differences between temperature anomalies during late and early stages of warm circulation types in all seasons. Results show that more persistent circulation patterns tend to enhance the severity of heat waves and support more pronounced temperature anomalies. Recent sharply rising trends in positive temperature extremes over Europe may be related to the greater persistence of the circulation types, and if similar changes towards enhanced persistence affect other mid-latitudinal regions, analogous consequences and implications for temperature extremes may be expected.


2021 ◽  
Vol 4 ◽  
Author(s):  
Ondrej Vargovčík ◽  
Zuzana Čiamporová-Zaťovičová ◽  
Fedor Čiampor Jr

State of ecosystems and biodiversity protection are becoming the key interests for modern society due to climate change and negative human impacts (Leese 2018). Environmental changes in freshwaters are indicated also by benthic communities, especially in sensitive ecosystems like alpine lakes (Fjellheim 2009). Moreover, remoteness and isolation of alpine lakes make them a source of biodiversity, which is worth conserving (Hamerlík 2014). A promising tool for efficient large-scale monitoring of aquatic communities is DNA metabarcoding (Leese 2018). In this study, we applied metabarcoding to analyse macrozoobenthos of 12 lakes in the Tatra Mountains, using benthic bulk samples and eDNA filtered from water (Fig. 1). In compliance with recent publications, eDNA amplified with BF3/BR2 primers resulted in high percentage of non-invertebrate reads (Leese 2021). Based on in silico tests with the obtained sequences, we confirm that the recently developed EPTDr2n primer enables minimizing non-target amplification even with eDNA filtered from alpine-lake water (Elbrecht and Leese 2017). This ability is facilitated by 3’ end of the primer and we observed the two important mismatches in non-target sequences from our study (Leese 2021). Thus, our future analyses of eDNA (and bulk-sample fixative) will benefit from the new primer. Concerning bulk samples, a wide range of invertebrate taxa was assigned to the OTUs and they showed good congruence with previous studies using morphological determination (e.g. Krno 2006). Certain differences with (and among) the previous records per lake were observed, which could suggest ecological changes, but at the moment the influence of sampling error cannot be excluded. In eDNA, several taxa were congruent with the previous records, but their amount and read abundance was considerably lower due to non-target amplification. Apart from that, filling gaps in barcoding databases remains one of our priorities, as identification to species or genus level was not yet possible for some invertebrate OTUs. In addition, we subjected the NGS data to denoising and abundance-filtering in order to explore haplotype-level diversity (Andújar 2021). Although more comprehensive conclusions will be possible only after obtaining data from more lakes and years, already the two metabarcoding experiments presented here enabled us to efficiently detect within-species genetic diversity and identify a large variety of taxa, including groups that would otherwise be omitted or very challenging to identify. This underlines the potential of DNA methods to provide valuable ecological and biodiversity data across the tree of life for modern biomonitoring. This study was realized with support from VEGA 2/0030/17 and VEGA 2/0084/21.


Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
pp. 58-75
Author(s):  
Michel Boufadel ◽  
◽  
Annalisa Bracco ◽  
Eric Chassignet ◽  
Shuyi Chen ◽  
...  

Physical transport processes such as the circulation and mixing of waters largely determine the spatial distribution of materials in the ocean. They also establish the physical environment within which biogeochemical and other processes transform materials, including naturally occurring nutrients and human-made contaminants that may sustain or harm the region’s living resources. Thus, understanding and modeling the transport and distribution of materials provides a crucial substrate for determining the effects of biological, geological, and chemical processes. The wide range of scales in which these physical processes operate includes microscale droplets and bubbles; small-scale turbulence in buoyant plumes and the near-surface “mixed” layer; submesoscale fronts, convergent and divergent flows, and small eddies; larger mesoscale quasi-geostrophic eddies; and the overall large-scale circulation of the Gulf of Mexico and its interaction with the Atlantic Ocean and the Caribbean Sea; along with air-sea interaction on longer timescales. The circulation and mixing processes that operate near the Gulf of Mexico coasts, where most human activities occur, are strongly affected by wind- and river-induced currents and are further modified by the area’s complex topography. Gulf of Mexico physical processes are also characterized by strong linkages between coastal/shelf and deeper offshore waters that determine connectivity to the basin’s interior. This physical connectivity influences the transport of materials among different coastal areas within the Gulf of Mexico and can extend to adjacent basins. Major advances enabled by the Gulf of Mexico Research Initiative in the observation, understanding, and modeling of all of these aspects of the Gulf’s physical environment are summarized in this article, and key priorities for future work are also identified.


2018 ◽  
Vol 39 (2) ◽  
pp. 579-595 ◽  
Author(s):  
Pollyanne Evangelista Da Silva ◽  
Cláudio Moisés Santos e Silva ◽  
Maria Helena Constantino Spyrides ◽  
Lára de Melo Barbosa Andrade

2021 ◽  
Author(s):  
Marine Bretagnon ◽  
Séverine Alvain ◽  
Astrid Bracher ◽  
Philippe Garnesson ◽  
Svetlana losa ◽  
...  

<p>Copernicus marine environment monitoring service (CMEMS) gives users access to a wide range of ocean descriptors. Both physics and biogeochemistry of the marine environment can be studied with complementary source of data, such as in situ data, modelling output and satellite observations at global scale and/or for European marginal seas. Among the ocean descriptors supplied as part of CMEMS, phytoplankton functional types (PFTs) describe the phytoplanktonic composition at global level or over European marginal seas. Studied phytoplankton assemblage is particularly important as it is the basis of the marine food-web. Composition of the first trophic level is a valuable indicator to infer the structure of the ecosystem and its health. Over the last decades, ocean colour remote sensing has been used to estimate the phytoplanktonic composition. The algorithms developed to estimate PFTs composition based on ocean colour observation can be classified in three categories: the spectral approaches, the abundance-based approaches (derived from the chlorophyll concentration) and the ecological approaches. The three approaches can lead to differences or, conversely, to similar patterns. Difference and similarity in PFTs estimation from remote sensing is a useful information for data assimilation or model simulation, as it provides indications on the uncertainties/variability associated to the PFT estimates. Indeed, PFT estimates from satellite observations are increasingly assimilated into ecological models to improve biogeochemical simulations, what highlights the importance to get an index or at least information describing the validity range of such PFTs estimates.</p><p>In this study, four algorithms (two abundance-based, and two spectral approaches) are compared. The aim of this study is to compare the related PFT products spatially and temporally, and to study the agreement of their derived PFT phenology. This study proposes also to compare PFT algorithms developed for the global ocean with those developed for specific regions in order to assess the potential strength and weakness of the different approaches. Once similarities and discrepancies between the different approaches are assessed, this information could be used by model to give an interval of confidence in model simulation.</p>


2021 ◽  
Author(s):  
Judith Hauck ◽  
Luke Gregor ◽  
Cara Nissen ◽  
Eric Mortenson ◽  
Seth Bushinsky ◽  
...  

<p>The Southern Ocean is the main gateway for anthropogenic CO<sub>2</sub> into the ocean owing to the upwelling of old water masses with low anthropogenic CO<sub>2</sub> concentration, and the transport of the newly equilibrated surface waters into the ocean interior through intermediate, deep and bottom water formation. Here we present first results of the Southern Ocean chapter of RECCAP2, which is the Global Carbon Project’s second systematic study on Regional Carbon Cycle Assessment and Processes. In the Southern Ocean chapter, we aim to assess the Southern Ocean carbon sink 1985-2018 from a wide range of available models and data sets, and to identify patterns of regional and temporal variability, model limitations and future challenges.</p><p>We gathered global and regional estimates of the air-sea CO<sub>2</sub> flux over the period 1985-2018 from global ocean biogeochemical models, surface pCO<sub>2</sub>-based data products, and data-assimilated models. The analysis on the Southern Ocean quantified geographical patterns in the annual mean and seasonal amplitude of air-sea CO<sub>2</sub> flux, with results presented here aggregated to the level of large-scale ocean biomes.</p><p>Considering the suite of observed and modelled estimates, we found that the subtropical seasonally stratified (STSS) biome stands out with the largest air-sea CO<sub>2</sub> flux per area and a seasonal cycle with largest ocean uptake of CO<sub>2</sub> in winter, whereas the ice (ICE) biome is characterized by a large ensemble spread and a pronounced seasonal cycle with the largest ocean uptake of CO<sub>2</sub> in summer. Connecting these two, the subpolar seasonally stratified (SPSS) biome has intermediate flux densities (flux per area), and most models have difficulties simulating the seasonal cycle with strongest uptake during the summer months.</p><p>Our analysis also reveals distinct differences between the Atlantic, Pacific and Indian sectors of the aforementioned biomes. In the STSS, the Indian sector contributes most to the ocean carbon sink, followed by the Atlantic and then Pacific sectors. This hierarchy is less pronounced in the models than in the data-products. In the SPSS, only the Atlantic sector exhibits net CO<sub>2</sub> uptake in all years, likely linked to strong biological production. In the ICE biome, the Atlantic and Pacific sectors take up more CO<sub>2</sub> than the Indian sector, suggesting a potential role of the Weddell and Ross Gyres.</p><p>These first results confirm the global relevance of the Southern Ocean carbon sink and highlight the strong regional and interannual variability of the Southern Ocean carbon uptake in connection to physical and biogeochemical processes.</p>


Author(s):  
Kenneth L. Clark ◽  
Robert O. Lawton

Because biological diversity is directly related to diversity of the physical environment, a clear picture of the physical setting of the Cordillera is crucial to understand its ecology and conservation. The physical setting of Monteverde and the Cordillera de Tilarán encompasses a wide range of environmental conditions. The size, position across the trade windflow, geology, erosional dissection, and hydrology of the Cordillera interact to produce extraordinary physical diversity that parallels its great biological diversity. A major difference between tropical montane and lowland regions is the way biological diversity is distributed across the landscape. Montane regions are usually less diverse at the scale of 0.01-0.1 km2 but are as rich in species as nearby lowland areas at scales of 10-100 km2. We have two goals in this chapter. First, we review what is known of the climate and weather, geology and geologic history, geomorphology, soils, and hydrology of Monteverde. Our account focuses on higher elevations in Monteverde and wetter areas on the Caribbean slope, with less attention to the drier environments on the lower Pacific slope. Second, we point out areas where our knowledge is incomplete and suggest promising lines of future research. Although the geology and geomorphology of Monteverde are moderately well known, our knowledge of the rates of many geomorphic processes, particularly erosion, is poor. We also lack information on soils and hydrology, particularly of wind-driven cloud and precipitation inputs, evapotranspiration, and stream outputs from forests and other land-use types in Monteverde. Quantitative information on how variability in the physical environment interacts with biotic processes at the population, community, and ecosystem levels is scant. Most of the climate and weather data were collected at 1450 m at the Pensiόn (1956-1971), at 1520 m at John Campbell's residence (1972 to present), and intermittently throughout or near the Monteverde Cloud Forest Preserve (MCFP; Lawton and Dryer 1980, Crump et al. 1992, Clark 1994, Bohlman et al. 1995, W. Calvert and A. Nelson, unpubl. data).


Sign in / Sign up

Export Citation Format

Share Document