scholarly journals Functional Heterogeneity in Superorganisms: Emerging Trends and Concepts

Author(s):  
Thomas A O’Shea-Wheller ◽  
Edmund R Hunt ◽  
Takao Sasaki

Abstract Social insects are biological benchmarks of self-organization and decentralized control. Their integrated yet accessible nature makes them ideal models for the investigation of complex social network interactions, and the mechanisms that shape emergent group capabilities. Increasingly, interindividual heterogeneity, and the functional role that it may play, is seen as an important facet of colonies’ social architecture. Insect superorganisms present powerful model systems for the elucidation of conserved trends in biology, through the strong and consistent analogies that they display with multicellular organisms. As such, research relating to the benefits and constraints of heterogeneity in behavior, morphology, phenotypic plasticity, and colony genotype provides insight into the underpinnings of emergent collective phenomena, with rich potential for future exploration. Here, we review recent advances and trends in the understanding of functional heterogeneity within social insects. We highlight the scope for fundamental advances in biological knowledge, and the opportunity for emerging concepts to be verified and expanded upon, with the aid of bioinspired engineering in swarm robotics, and computational task allocation.

Reproduction ◽  
2003 ◽  
pp. 447-456 ◽  
Author(s):  
U Schlecht ◽  
M Primig

Gametogenesis is a key developmental process that involves complex transcriptional regulation of numerous genes including many that are conserved between unicellular eukaryotes and mammals. Recent expression-profiling experiments using microarrays have provided insight into the co-ordinated transcription of several hundred genes during mitotic growth and meiotic development in budding and fission yeast. Furthermore, microarray-based studies have identified numerous loci that are regulated during the cell cycle or expressed in a germ-cell specific manner in eukaryotic model systems like Caenorhabditis elegans, Mus musculus as well as Homo sapiens. The unprecedented amount of information produced by post-genome biology has spawned novel approaches to organizing biological knowledge using currently available information technology. This review outlines experiments that contribute to an emerging comprehensive picture of the molecular machinery governing sexual reproduction in eukaryotes.


2020 ◽  
Vol 15 ◽  
Author(s):  
Geeta Aggarwal ◽  
Manju Nagpal ◽  
Ameya Sharma ◽  
Vivek Puri ◽  
Gitika Arora Dhingra

Background: Biopharmaceuticals such as Biologic medicinal products have been in clinical use over the past three decades and have benefited towards the therapy of degenerative and critical metabolic diseases. It is forecasted that market of biologics will be going to increase at a rate of 20% per year, and by 2025, more than ˃ 50% of new drug approvals may be biological products. The increasing utilization of the biologics necessitates for cost control, especially for innovators products that have enjoyed a lengthy period of exclusive use. As the first wave of biopharmaceuticals is expired or set to expire, it has led to various opportunities for the expansion of bio-similars i.e. copied versions of original biologics with same biologic activity. Development of biosimilars is expected to promote market competition, meet worldwide demand, sustain the healthcare systems and maintain the incentives for innovation. Methods: Appraisal of published articles from peer reviewed journals, PubMed literature, latest news and guidelines from European Medicine Agency, US Food Drug Administration (FDA) and India are used to identify data for review. Results: Main insight into the quality requirements concerning biologics, current status of regulation of biosimilars and upcoming challenges lying ahead for the upgrading of marketing authorization of bio-similars has been incorporated. Compiled literature on therapeutic status, regulatory guidelines and the emerging trends and opportunities of biosimilars has been thoroughly stated. Conclusion: Updates on biosimilars will support to investigate the possible impact of bio-similars on healthcare market.


Author(s):  
Yaneenart Suwanwong ◽  
Malin Kvist ◽  
Chartchalerm Isarankura-Na-Ayudhya ◽  
Natta Tansila ◽  
Leif Bulow ◽  
...  

2020 ◽  
pp. jbc.RA120.015230
Author(s):  
Ethan C Strayer ◽  
Stephen Lu ◽  
Jose M. Ribeiro ◽  
John F. Andersen

Inhibition of the alternative pathway (AP) of complement by saliva from Anopheles mosquitoes facilitates feeding by blocking production of the anaphylatoxins C3a and C5a which activate mast cells leading to plasma extravasation, pain and itching. We have previously shown that albicin, a member of the SG7 protein family from An. albimanus blocks the AP by binding to and inhibiting the function of the C3 convertase, C3bBb. Here we show that SG7.AF, the albicin homolog from An. freeborni, has a similar potency to albicin but is more active in the presence of properdin, a plasma protein that acts to stabilize C3bBb. Conversely, albicin is highly active in the absence or presence of properdin. Albicin and SG7.AF stabilize the C3bBb complex in a form that accumulates on surface plasmon resonance (SPR) surfaces coated with properdin but SG7.AF binds with lower affinity than albicin. Albicin induces oligomerization of the complex in solution, suggesting that it is oligomerization that leads to stabilization on SPR surfaces. Anophensin, the albicin ortholog from An. stephensi, is only weakly active as an inhibitor of the AP, suggesting that the SG7 family may play a different functional role in this species and other species of the subgenus Cellia, containing the major malaria vectors in Africa and Asia. Crystal structures of albicin and SG7.AF reveal a novel four-helix bundle arrangement, that is stabilized by a N-terminal hydrogen bonding network. These structures provide insight into the SG7 family and related mosquito salivary proteins including the platelet-inhibitory 30kDa family.


2013 ◽  
Vol 9 ◽  
pp. 1907-1916 ◽  
Author(s):  
Catrin Goeschen ◽  
Uta Wille

Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions.


Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 38 ◽  
Author(s):  
Masayuki Hayakawa ◽  
Satoshi Umeyama ◽  
Ken Nagai ◽  
Hiroaki Onoe ◽  
Masahiro Takinoue

Recently, the construction of models for multicellular systems such as tissues has been attracting great interest. These model systems are expected to reproduce a cell communication network and provide insight into complicated functions in living systems./Such network structures have mainly been modelled using a droplet and a vesicle. However, in the droplet and vesicle network, there are difficulties attributed to structural instabilities due to external stimuli and perturbations. Thus, the fabrication of a network composed of a stable component such as hydrogel is desired. In this article, the construction of a stable network composed of honeycomb-shaped microhydrogels is described. We produced the microhydrogel network using a centrifugal microfluidic technique and a photosensitive polymer. In the network, densely packed honeycomb-shaped microhydrogels were observed. Additionally, we successfully controlled the degree of packing of microhydrogels in the network by changing the centrifugal force. We believe that our stable network will contribute to the study of cell communication in multicellular systems.


1981 ◽  
Vol 95 (1) ◽  
pp. 167-180
Author(s):  
B. I. Roots

Macromolecular markers for glial cells have been sought for a variety of reasons. One of the earliest was the need for a means of assessing the purity of cell and subcellular fractions prepared from nervous tissue. While there is still a requirement for this kind of tool, emphasis has shifted towards seeking information on biochemical differentiation among cells and their functional interactions. A brief general review will be made of glial markers and two of these, 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP) and glutamine synthetase (GS), will be considered in detail. Until recently studies of markers have been concentrated on the higher vertebrates and those on lower vertebrates and invertebrates have hardly begun. However, such comparative studies may lead to fresh insight into old problems. For example, CNP has long been regarded as a marker for myelin and oligodendrocytes but it has not been possible to attribute a functional role to it and its relation to myelination has remained obscure. The finding that it is present in the glia of a moth Manduca sexta which lacks myelin provides a stimulus for a fresh approach to the problem. Another example is provided by studies on GS. This enzyme is found in astrocyte feet and preliminary results indicate that it is localized also in the perineurial glia of Aplysia ganglia. These results lead to a reconsideration of the perennial question of the possible role of astrocyte feet in barrier mechanisms. Extension of comparative studies may not only raise new questions but also provide some answers.


1996 ◽  
Vol 109 (11) ◽  
pp. 2609-2611 ◽  
Author(s):  
S.T. Suzuki

Recent cadherin studies have revealed that many cadherins and cadherin-related proteins are expressed in various tissues of different multicellular organisms. These proteins are characterized by the multiple repeats of the cadherin motif in their extracellular domains. The members of the cadherin superfamily are divided into two groups: classical cadherin type and protocadherin type. The current cadherins appear to have evolved from a protocadherin type. Recent studies have proved the cell adhesion role of classical cadherins in embryogenesis. In contrast, the biological role of protocadherins is elusive. Circumstantial evidence, however, suggests that protocadherins are involved in a variety of cell-cell interactions. Since protocadherins, and many other new cadherins as well, have unique properties, studies of these cadherins may provide insight into the structure and biological role of the cadherin superfamily.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
William Bakhache ◽  
Aymeric Neyret ◽  
Eric Bernard ◽  
Andres Merits ◽  
Laurence Briant

ABSTRACT In mammalian cells, alphavirus replication complexes are anchored to the plasma membrane. This interaction with lipid bilayers is mediated through the viral methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine residue(s) in the C-terminal region of this protein. Lipid content of membranes supporting nsP1 anchoring remains poorly studied. Here, we explore the membrane binding capacity of nsP1 with regard to cholesterol. Using the medically important chikungunya virus (CHIKV) as a model, we report that nsP1 cosegregates with cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid rafts. In search for the critical factor for cholesterol partitioning, we identify nsP1 palmitoylated cysteines as major players in this process. In cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1, together with the other nonstructural proteins, are detected in DRMs. While the functional importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains to be determined, we observed that U18666A- and imipramine-induced sequestration of cholesterol in late endosomes redirected nsP1 to these compartments and simultaneously dramatically decreased CHIKV genome replication. A parallel study of Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low affinity for cholesterol and only moderately segregates with DRMs. Behaviors of CHIKV and SINV with regard to cholesterol, therefore, match with the previously reported differences in the requirement for nsP1 palmitoylation, which is dispensable for SINV but strictly required for CHIKV replication. Altogether, this study highlights the functional importance of nsP1 segregation with DRMs and provides new insight into the functional role of nsP1 palmitoylated cysteines during alphavirus replication. IMPORTANCE Functional alphavirus replication complexes are anchored to the host cell membranes through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the importance of cholesterol for such an association. We show that nsP1 has affinity for cholesterol-rich membrane microdomains formed at the plasma membrane and identify conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol affinity. We demonstrate that drug-induced cholesterol sequestration in late endosomes not only redirects nsP1 to this compartment but also dramatically decreases genome replication, suggesting the functional importance of nsP1 targeting to cholesterol-rich plasma membrane microdomains. Finally, we show evidence that nsP1 from chikungunya and Sindbis viruses displays different sensitivity to cholesterol sequestering agents that parallel with their difference in the requirement for nsP1 palmitoylation for replication. This research, therefore, gives new insight into the functional role of palmitoylated cysteines in nsP1 for the assembly of functional alphavirus replication complexes in their mammalian host.


Sign in / Sign up

Export Citation Format

Share Document