scholarly journals P-017 Tanshinone IIA could inhibit gastric carcinoma AGS cells through increasing the protein expression levels of p-p38, TNF-α, Bax and CHOP but decreasing p-ERK, TCTP and Bip in vivo

2015 ◽  
Vol 26 ◽  
pp. iv5
Author(s):  
C.C. Su
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


2020 ◽  
Author(s):  
Chuan-jiang Liu ◽  
Qiang Fu ◽  
Wenjing Zhou ◽  
Xu Zhang ◽  
Rui Chen ◽  
...  

Abstract Background: Methylprednisolone (MP) is a synthetic corticosteroid with potent anti-inflammatory and antioxidant properties used as therapy for a variety of diseases. The underlying mechanism of MP to reduce acute pancreatitis still needs to be elucidated.Methods: Twenty-four male C57BL/6 mice (6-8 weeks) were used to establish SAP mouse model by administering an intraperitoneal injection of Cae and LPS. Amylase expression levels of serum and PLF were measured with an amylase assay kit. The concentrations of IL-1β and TNF-α in the serum and PLF were detected by ELISA. The level of pancreatic and lung tissue damage and inflammation was assessed by H&E staining and immunofluorescence staining. Western blot and qPCR were used to detect the expression levels of NLRP3, IL-1β and TNF-αin vivo and in vitro.Results: In this study, we found MP, used in the early phase of SAP, decreased the levels of IL-1β and TNF-α in serum and peritoneal lavage fluids (PLF), reduced the level of serum amylase and the expression of MPO in lung tissue, attenuated the pathological injury of the pancreas and lungs in a dose-dependent manner. The expression of NLRP3 and IL-1β in pancreas and lungs was down-regulated significantly depending on the MP concentration. In vitro, MP reduced the levels of IL-1β and TNF-α by down-regulating the expression of NLRP3, IL-1β and p-NF-κB in isolated peritoneal macrophages. Conclusion: MP can attenuate the injury of pancreas and lungs, and the inflammatory response in SAP mice by down-regulating the activation of NF-κB and the NLRP3 inflammasome.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2647
Author(s):  
Jinhan Yang ◽  
Tong Wang ◽  
Xiaoxia Jin ◽  
Gaoyang Wang ◽  
Fenghong Zhao ◽  
...  

We have previously reported that the activation of astrocytes and microglia may lead to the overproduction of proinflammatory mediators, which could induce neuroinflammation and cause brain edema in 1,2-dichloroethane (1,2-DCE)-intoxicated mice. In this research, we further hypothesized that astrocyte–microglia crosstalk might trigger neuroinflammation and contribute to brain edema in 1,2-DCE-intoxicated mice. The present research revealed, for the first time, that subacute intoxication with 1,2-DCE might provoke the proinflammatory polarization of microglia, and pretreatment with minocycline, a specific inhibitor of microglial activation, may attenuate the enhanced protein levels of ionized calcium-binding adapter molecule1 (Iba-1), cluster of differentiation 11b (CD11b), glial fibrillary acidic protein (GFAP), soluble calcium-binding protein 100B (S100B), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), Toll-like receptor 4 (TLR4), MyD88, and p-p65, and ameliorate the suppressed protein expression levels of occludin and claudin 5; we also observed changes in water content and made pathological observations on edema in the brains of 1,2-DCE-intoxicated mice. Moreover, pretreatment with fluorocitrate, an inhibitor of reactive astrocytes, could also reverse the alteration in protein expression levels of GFAP, S100B, Iba-1, CD11b, TNF-α, IL-6, iNOS, VCAM-1, ICAM-1, MMP-9, occludin, and claudin 5 in the brain of 1,2-DCE intoxicated mice. Furthermore, pretreatment with melatonin, a well-known anti-inflammatory drug, could also attenuate the above-mentioned changes in the brains of 1,2-DCE-intoxicated mice. Altogether, the findings from this research indicated that microglial activation might play an important role in triggering neuroinflammation, and hence may contribute to brain edema formation; additionally, the findings suggested that molecular crosstalk between reactive astrocytes and activated microglia may amplify the neuroinflammatory reaction, which could induce secondary brain injury in 1,2-DCE-intoxicated mice.


2010 ◽  
Vol 299 (4) ◽  
pp. H985-H994 ◽  
Author(s):  
Hanrui Zhang ◽  
Brandon Morgan ◽  
Barry J. Potter ◽  
Lixin Ma ◽  
Kevin C. Dellsperger ◽  
...  

Resveratrol is a natural phytophenol that exhibits cardioprotective effects. This study was designed to elucidate the mechanisms by which resveratrol protects against diabetes-induced cardiac dysfunction. Normal control ( m-Lepr db) mice and type 2 diabetic ( Lepr db) mice were treated with resveratrol orally for 4 wk. In vivo MRI showed that resveratrol improved cardiac function by increasing the left ventricular diastolic peak filling rate in Lepr db mice. This protective role is partially explained by resveratrol's effects in improving nitric oxide (NO) production and inhibiting oxidative/nitrative stress in cardiac tissue. Resveratrol increased NO production by enhancing endothelial NO synthase (eNOS) expression and reduced O2·− production by inhibiting NAD(P)H oxidase activity and gp91phox mRNA and protein expression. The increased nitrotyrosine (N-Tyr) protein expression in Lepr db mice was prevented by the inducible NO synthase (iNOS) inhibitor 1400W. Resveratrol reduced both N-Tyr and iNOS expression in Lepr db mice. Furthermore, TNF-α mRNA and protein expression, as well as NF-κB activation, were reduced in resveratrol-treated Lepr db mice. Both Lepr db mice null for TNF-α ( dbTNF−/ dbTNF− mice) and Lepr db mice treated with the NF-κB inhibitor MG-132 showed decreased NAD(P)H oxidase activity and iNOS expression as well as elevated eNOS expression, whereas m-Lepr db mice treated with TNF-α showed the opposite effects. Thus, resveratrol protects against cardiac dysfunction by inhibiting oxidative/nitrative stress and improving NO availability. This improvement is due to the role of resveratrol in inhibiting TNF-α-induced NF-κB activation, therefore subsequently inhibiting the expression and activation of NAD(P)H oxidase and iNOS as well as increasing eNOS expression in type 2 diabetes.


2021 ◽  
Author(s):  
Abdullah Aslan ◽  
Muhammed Ismail Can ◽  
Ozlem Gok ◽  
Seda Beyaz ◽  
Gozde Parlak ◽  
...  

Abstract In this study, 42 Wistar albino female rats (n = 42, 8 weeks old) were used. Rats were divided into 6 groups and 7 rats included each group. Groups: (i) Control Group: Standard diet; (ii) RJ (royal jelly) Group: Standard diet + royal jelly; (iii) F50 Group: Standard diet + 50 mg/kg fluoride; (iv): F100 Group: Standard diet + 100 mg/kg fluoride; (v) F50 + RJ Group: Standard diet + 50 mg/kg fluoride + royal jelly; (iv): F100 + RJ Group: Standard diet + 100 mg/kg fluoride + royal jelly. After the 8-week study period, the rats were decapitated and their muscle tissues were removed. Expression levels of Caspase-3, Caspase-6, Bax, Tnf-α, IL1-α and Bcl-2 proteins in muscle tissue were determined by Western Blotting method. Histopathological analyzes were also performed on the muscle tissue. MDA, GSH, and CAT analyzes were determined by spectrophotometric analysis. According to our findings, Bcl-2, Tnf-α and IL1-α protein expression were increased in damage groups compared to control and royal jelly groups, Caspase-3, Caspase-6 and Bax protein expression levels decreased in damage groups. There was an increase in MDA level in damage groups compared to the control and royal jelly groups, CAT and GSH levels decreased in damage groups. According to histopathological analysis results, edema and inflammatory cell formations were found in the injury groups, a tendency to decrease in these injuries was observed in the treatment groups. Based on these results, we can say that royal jelly has protective effects against fluoride damage.


2018 ◽  
Author(s):  
Matthew M. Crane ◽  
Bryan Sands ◽  
Christian Battaglia ◽  
Brock Johnson ◽  
Soo Yun ◽  
...  

AbstractIntrons can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). To date, the magnitude of IME has been quantified in human cell culture and plant models by comparing intronless reporter gene expression levels to those of intron-bearing reporter genes in vitro (mRNA, Western Blots, protein activity), using genome editing technologies that lacked full control of locus and copy number. Here, for the first time, we quantified IME in vivo, in terms of protein expression levels, using fluorescent reporter proteins expressed from a single, defined locus in Caenorhabditis elegans. To quantify the magnitude of IME, we developed a microfluidic chip-based workflow to mount and image individual animals, including software for operation and image processing. We used this workflow to systematically test the effects of position, number and sequence of introns on two different proteins, mCherry and mEGFP, driven by two different promoters, vit-2 and hsp-90. We found the three canonical synthetic introns commonly used in C. elegans transgenes increased mCherry protein concentration by approximately 50%. The naturally-occurring introns found in hsp-90 also increased mCherry expression level by about 50%. Furthermore, and consistent with prior results examining mRNA levels, protein activity or phenotypic rescue, we found that a single, natural or synthetic, 5’ intron was sufficient for the full IME effect while a 3’ intron was not. IME was also affected by protein coding sequence (50% for mCherry and 80% for mEGFP) but not strongly affected by promoter 46% for hsp-90 and 54% for the stronger vit-2. Our results show that IME of protein expression in C. elegans is affected by intron position and contextual coding sequence surrounding the introns, but not greatly by promoter strength. Our combined controlled transgenesis and microfluidic screening approach should facilitate screens for factors affecting IME and other intron-dependent processes.


Sign in / Sign up

Export Citation Format

Share Document