scholarly journals Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging

2010 ◽  
Vol 299 (4) ◽  
pp. H985-H994 ◽  
Author(s):  
Hanrui Zhang ◽  
Brandon Morgan ◽  
Barry J. Potter ◽  
Lixin Ma ◽  
Kevin C. Dellsperger ◽  
...  

Resveratrol is a natural phytophenol that exhibits cardioprotective effects. This study was designed to elucidate the mechanisms by which resveratrol protects against diabetes-induced cardiac dysfunction. Normal control ( m-Lepr db) mice and type 2 diabetic ( Lepr db) mice were treated with resveratrol orally for 4 wk. In vivo MRI showed that resveratrol improved cardiac function by increasing the left ventricular diastolic peak filling rate in Lepr db mice. This protective role is partially explained by resveratrol's effects in improving nitric oxide (NO) production and inhibiting oxidative/nitrative stress in cardiac tissue. Resveratrol increased NO production by enhancing endothelial NO synthase (eNOS) expression and reduced O2·− production by inhibiting NAD(P)H oxidase activity and gp91phox mRNA and protein expression. The increased nitrotyrosine (N-Tyr) protein expression in Lepr db mice was prevented by the inducible NO synthase (iNOS) inhibitor 1400W. Resveratrol reduced both N-Tyr and iNOS expression in Lepr db mice. Furthermore, TNF-α mRNA and protein expression, as well as NF-κB activation, were reduced in resveratrol-treated Lepr db mice. Both Lepr db mice null for TNF-α ( dbTNF−/ dbTNF− mice) and Lepr db mice treated with the NF-κB inhibitor MG-132 showed decreased NAD(P)H oxidase activity and iNOS expression as well as elevated eNOS expression, whereas m-Lepr db mice treated with TNF-α showed the opposite effects. Thus, resveratrol protects against cardiac dysfunction by inhibiting oxidative/nitrative stress and improving NO availability. This improvement is due to the role of resveratrol in inhibiting TNF-α-induced NF-κB activation, therefore subsequently inhibiting the expression and activation of NAD(P)H oxidase and iNOS as well as increasing eNOS expression in type 2 diabetes.

Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 2997-3005 ◽  
Author(s):  
Joseph P. Tiano ◽  
Franck Mauvais-Jarvis

The gonadal steroid, 17β-estradiol (E2), suppresses pancreatic islet fatty acid and glycerolipid synthesis and prevents β-cell failure in rodent models of type 2 diabetes. β-Cell estrogen receptors (ER) mediate these actions by suppressing the expression and enzymatic activity of fatty acid synthase (FAS). Here, we explored the mechanism of FAS suppression. We show that E2, and pharmacological agonists for ERα, ERβ, and the G protein-coupled ER, suppress mRNA and protein expression of the transcriptional regulators of FAS, namely, sterol regulatory element-binding protein 1c (SREBP1c) and carbohydrate response element binding protein (ChREBP) in insulin-secreting INS-1 cells. ER suppress SREBP1c and ChREBP mRNA and protein expression via an extranuclear localization. Using two mouse lines with pancreas-specific null deletion of either ERα or the signal transducer and activator of transcription 3 (STAT3), we show that ERα activation in vivo reduces SREBP1c and ChREBP mRNA expression via a direct islet action involving STAT3 activation. The master regulators of lipogenesis, liver X receptor (LXR) α and β, transcriptionally up-regulate SREBP1c and ChREBP. We find that activation of ERα, ERβ, and G protein-coupled ER suppresses LXR's mRNA expression in INS-1 cells. We also observe that activation of ERα in mouse islets in vivo suppresses LXR mRNA in a STAT3-dependent manner. Finally, we show that E2 also activates and uses AMP-activated protein kinase in INS-1 cells to suppress SREBP1c protein expression. This study identifies extranuclear ER pathways involving STAT3 and AMP-activated protein kinase in the genetic control of lipogenesis with therapeutic implications to protect β-cells in type 2 diabetes.


2021 ◽  
Vol 30 ◽  
pp. 096368972097873
Author(s):  
Jing Li ◽  
Youming Zhu ◽  
Na Li ◽  
Tao Wu ◽  
Xianyu Zheng ◽  
...  

The lack of vasculogenesis often hampers the survivability and integration of newly engineered tissue grafts within the host. Autologous endothelial cells (ECs) are an ideal cell source for neovascularization, but they are limited by their scarcity, lack of proliferative capacity, and donor site morbidity upon isolation. The objective of this study was to determine whether differentiation of human dental pulp stem cells (DPSCs) into the endothelial lineage can be enhanced by recombinant ETV2 overexpression. DPSCs were extracted from fresh dental pulp tissues. ETV2 overexpression in DPSCs was achieved by lentiviral infection and cellular morphological changes were evaluated. The mRNA and protein expression levels of endothelial-specific markers were assessed through quantitative real-time polymerase chain reaction, western blot, immunofluorescence staining, and flow cytometry. The tube formation assay and Matrigel plug assay were also performed to evaluate the angiogenic potential of the ETV2-transduced cells in vitro and in vivo, respectively. Additionally, proteomic analysis was performed to analyze global changes in protein expression following ETV2 overexpression. After lentiviral infection, ETV2-overexpressing DPSCs showed endothelial-like morphology. Compared with control DPSCs, significantly higher mRNA and protein expression levels of endothelial-specific genes, including CD31, VE-Cadherin, VEGFR1, and VEGFR2, were detected in ETV2-overexpressing DPSCs. Moreover, ETV2 overexpression enhanced capillary-like tube formation on Matrigel in vitro, as well as neovascularization in vivo. In addition, comparative proteomic profiling showed that ETV2 overexpression upregulated the expression of vascular endothelial growth factor (VEGF) receptors, which was indicative of increased VEGF signaling. Taken together, our results indicate that ETV2 overexpression significantly enhanced the endothelial differentiation of DPSCs. Thus, this study shows that DPSCs can be a promising candidate cell source for tissue engineering applications.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1682 ◽  
Author(s):  
Michaela Kosutova ◽  
Olga Pechanova ◽  
Andrej Barta ◽  
Sona Franova ◽  
Martina Cebova

Myocardial infarction (MI) remains the leading cause of death worldwide. We aimed to investigate the effect of NO deficiency on selective biochemical parameters within discreet myocardial zones after experimentally induced MI. To induce MI, the left descending coronary artery was ligated in two groups of 16-week-old WKY rats. In one group, NO production was inhibited by L-NAME (20 mg/kg/day) administration four weeks prior to ligation. Sham operations were performed on both groups as a control. Seven days after MI, we evaluated levels of nitric oxide synthase (NOS) activity, eNOS, iNOS, NFҡB/p65 and Nrf2 in ischemic, injured and non-ischemic zones of the heart. Levels of circulating TNF-α and IL-6 were evaluated in the plasma. MI led to increased NOS activity in all investigated zones of myocardium as well as circulating levels of TNF-α and IL-6. L-NAME treatment decreased NOS activity in the heart of sham operated animals. eNOS expression was increased in the injured zone and this could be a compensatory mechanism that improves the perfusion of the myocardium and cardiac dysfunction. Conversely, iNOS expression increased in the infarcted zone and may contribute to the inflammatory process and irreversible necrotic changes.


Rheumatology ◽  
2019 ◽  
Vol 59 (9) ◽  
pp. 2258-2263 ◽  
Author(s):  
Tiago Carvalheiro ◽  
Beatriz Malvar Fernández ◽  
Andrea Ottria ◽  
Barbara Giovannone ◽  
Wioleta Marut ◽  
...  

Abstract Objectives SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target. This study aimed to analyse the potential role of exogenous SPARC as a regulator of fibrosis in SSc. Methods Dermal fibroblasts from both healthy controls and SSc patients were stimulated with SPARC alone or in combination with TGF-β1, in the absence or presence of a TGF receptor 1 inhibitor. mRNA and protein expression of extracellular matrix components and other fibrosis-related mediators were measured by quantitative PCR and western blot. Results Exogenous SPARC induced mRNA and protein expression of collagen I, collagen IV, fibronectin 1, TGF-β and SPARC by dermal fibroblasts from SSc patients, but not from healthy controls. Importantly, exogenous SPARC induced the activation of the tyrosine kinase SMAD2 and pro-fibrotic gene expression induced by SPARC in SSc fibroblasts was abrogated by inhibition of TGF-β signalling. Conclusion These results indicate that exogenous SPARC is an important pro-fibrotic mediator contributing to the pathology driving SSc but in a TGF-β dependent manner. Therefore, SPARC could be a promising therapeutic target for reducing fibrosis in SSc patients, even in late states of the disease.


1997 ◽  
Vol 186 (9) ◽  
pp. 1495-1502 ◽  
Author(s):  
Ala I. Sharara ◽  
Douglas J. Perkins ◽  
Mary A. Misukonis ◽  
Stanley U. Chan ◽  
Jason A. Dominitz ◽  
...  

Although researchers have noted high level activation of rodent mononuclear phagocytes for nitric oxide (NO) synthase type 2 (S2) expression and NO production with a variety of agents such as interferon (IFN) γ and endotoxin, it has been difficult to demonstrate activation of human mononuclear phagocytes. The purpose of this study was to determine if IFN-α serves as an activator in vitro and in vivo in humans. Treatment of normal monocytes or mononuclear cells in vitro with IFN-α caused a dose-dependent increase in monocyte NOS2 activity and NO production, and increased expression of NOS2 protein and mRNA expression. To determine if in vivo administration of IFN-α also modulated NOS2, we studied blood cells from patients with hepatitis C before and after IFN-α therapy. Untreated patients with chronic hepatitis C virus infection had levels of NOS activity and NOS2 antigen in freshly isolated mononuclear cells similar to those of healthy subjects, and they expressed minimal or no NOS2 mRNA. However, IFN-α treatment of patients with hepatitis C infection was associated with a significant elevation in mononuclear cell NOS activity, NOS2 antigen content, and NOS2 mRNA content. IFN-α–treated patients had significant decreases in levels of serum alanine aminotransferase and plasma hepatitis C mRNA. The degree of IFN-α–enhanced mononuclear cell NOS2 antigen content correlated significantly with the degree of reduction in serum alanine aminotransferase levels. Thus, IFN-α treatment of cells in vitro or administration of IFN-α to hepatitis C patients in vivo increases expression of mononuclear cell NOS2 mRNA expression, NOS activity, NOS2 antigen expression, and NO production. Since NO has been reported to have antiviral activity for a variety of viruses, we speculate that induced NO production may be related to the antiviral action(s) of IFN-α in hepatitis C infection.


Sign in / Sign up

Export Citation Format

Share Document