scholarly journals The inducing of caspase and bcl-2 pathway with royal jelly decreases the muscle tissue damage exposed with fluoride in rats

Author(s):  
Abdullah Aslan ◽  
Muhammed Ismail Can ◽  
Ozlem Gok ◽  
Seda Beyaz ◽  
Gozde Parlak ◽  
...  

Abstract In this study, 42 Wistar albino female rats (n = 42, 8 weeks old) were used. Rats were divided into 6 groups and 7 rats included each group. Groups: (i) Control Group: Standard diet; (ii) RJ (royal jelly) Group: Standard diet + royal jelly; (iii) F50 Group: Standard diet + 50 mg/kg fluoride; (iv): F100 Group: Standard diet + 100 mg/kg fluoride; (v) F50 + RJ Group: Standard diet + 50 mg/kg fluoride + royal jelly; (iv): F100 + RJ Group: Standard diet + 100 mg/kg fluoride + royal jelly. After the 8-week study period, the rats were decapitated and their muscle tissues were removed. Expression levels of Caspase-3, Caspase-6, Bax, Tnf-α, IL1-α and Bcl-2 proteins in muscle tissue were determined by Western Blotting method. Histopathological analyzes were also performed on the muscle tissue. MDA, GSH, and CAT analyzes were determined by spectrophotometric analysis. According to our findings, Bcl-2, Tnf-α and IL1-α protein expression were increased in damage groups compared to control and royal jelly groups, Caspase-3, Caspase-6 and Bax protein expression levels decreased in damage groups. There was an increase in MDA level in damage groups compared to the control and royal jelly groups, CAT and GSH levels decreased in damage groups. According to histopathological analysis results, edema and inflammatory cell formations were found in the injury groups, a tendency to decrease in these injuries was observed in the treatment groups. Based on these results, we can say that royal jelly has protective effects against fluoride damage.

2020 ◽  
Author(s):  
Zhixiong Chen ◽  
jing wang ◽  
Anquan Yang ◽  
Lihua Zhang ◽  
Yaojia Lu ◽  
...  

Abstract Background: Previous studies have demonstrated that pearl extract (PE) promotes wound healing and skin whitening. However, it remains unclear whether PE can inhibit ultraviolet (UV)-photodamage in HaCaT cells. In this study, an in vitro photoaging cell model was established to observe the effect of PE on UV-induced damage and the apoptosis of HaCaT cells. The aim of this study was to provide a reference for the future development of natural sunscreens.Results: PE concentrations of 0.1 and 1 μg/mL were considered the most effective and safe concentrations. Compared to that in the control group, superoxide dismutase and glutathione peroxidase activity in the photoaging group was significantly reduced, whereas malondialdehyde and reactive oxygen species content, along with tumour necrosis factor-alpha (TNF-α) and interleukin (IL)-10 mRNA and protein levels, were markedly increased. In contrast, Bcl-2 protein expression was significantly decreased, whereas caspase-3, caspase-9, and Bax protein expression levels were significantly increased. Compared to that in the photoaging group, HaCaT cell proliferation was significantly increased in the PE group. Both PE concentrations significantly increased superoxide dismutase and glutathione peroxidase activity in cells, reduced malondialdehyde and reactive oxygen species content, decreased TNF-α and IL-10 mRNA expression in cells, and reduced TNF-α and IL-10 protein levels in the supernatant. Additionally, Bcl-2 protein expression levels were significantly increased, whereas caspase-3, caspase-9, and Bax protein expression levels were significantly reduced by PE treatment.Conclusions: PE can inhibit UV-induced apoptosis by inhibiting mitochondria-mediated apoptosis and regulating TNF-α and IL-10 expression.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


2018 ◽  
Vol 51 (4) ◽  
pp. 1982-1995 ◽  
Author(s):  
Yuji Kaneko ◽  
Julian P. Tuazon ◽  
Xunming Ji ◽  
Cesario V. Borlongan

Background/Aims: The endogenous neurotrophic peptides pituitary adenylate cyclase-activating polypeptides (PACAP-27/38) protect against stroke, but the molecular mechanism remains unknown. Methods: Primary rat neural cells were exposed to PACAP-27 or PACAP-38 before induction of experimental acute ischemic stroke via oxygen-glucose deprivation-reperfusion (OGD/R) injury. To reveal PACAP’s role in neuroprotection, we employed fluorescent live/dead cell viability and caspase 3 assays, optical densitometry of mitochondrial dehydrogenase and cell growth, glutathione disulfide luciferase activity, ELISA for high mobility group box1 extracellular concentration, ATP bioluminescence, Western blot analysis of PACAP, NMDA subunits, apoptosis regulator Bcl-2, social interaction hormone oxytocin, and trophic factor BDNF, and immunocytochemical analysis of PACAP. Results: Both PACAP-27 and PACAP-38 (PACAP-27/38) increased cell viability, decreased oxidative stress-induced cell damage, maintained mitochondrial activity, prevented the release of high mobility group box1, and reduced cytochrome c/caspase 3-induced apoptosis. PACAP-27/38 increased the protein expression levels of BDNF, Bcl-2, oxytocin, and precursor PACAP. N-methyl-D-aspartate receptor (NMDAR)-induced excitotoxicity contributes to the cell death associated with stroke. PACAP-27/38 modulated the protein expression levels of NMDAR subunits. PACAP-27/38 increased the protein expression levels of the GluN1 subunit, and decreased that of the GluN2B and GluN2D subunits. PACAP-27, but not PACAP-38, increased the expression level of the GluN2C subunit. Conclusion: This study provides evidence that PACAP regulated NMDAR subunits, affording neuroprotection after OGD/R injury.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2647
Author(s):  
Jinhan Yang ◽  
Tong Wang ◽  
Xiaoxia Jin ◽  
Gaoyang Wang ◽  
Fenghong Zhao ◽  
...  

We have previously reported that the activation of astrocytes and microglia may lead to the overproduction of proinflammatory mediators, which could induce neuroinflammation and cause brain edema in 1,2-dichloroethane (1,2-DCE)-intoxicated mice. In this research, we further hypothesized that astrocyte–microglia crosstalk might trigger neuroinflammation and contribute to brain edema in 1,2-DCE-intoxicated mice. The present research revealed, for the first time, that subacute intoxication with 1,2-DCE might provoke the proinflammatory polarization of microglia, and pretreatment with minocycline, a specific inhibitor of microglial activation, may attenuate the enhanced protein levels of ionized calcium-binding adapter molecule1 (Iba-1), cluster of differentiation 11b (CD11b), glial fibrillary acidic protein (GFAP), soluble calcium-binding protein 100B (S100B), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), Toll-like receptor 4 (TLR4), MyD88, and p-p65, and ameliorate the suppressed protein expression levels of occludin and claudin 5; we also observed changes in water content and made pathological observations on edema in the brains of 1,2-DCE-intoxicated mice. Moreover, pretreatment with fluorocitrate, an inhibitor of reactive astrocytes, could also reverse the alteration in protein expression levels of GFAP, S100B, Iba-1, CD11b, TNF-α, IL-6, iNOS, VCAM-1, ICAM-1, MMP-9, occludin, and claudin 5 in the brain of 1,2-DCE intoxicated mice. Furthermore, pretreatment with melatonin, a well-known anti-inflammatory drug, could also attenuate the above-mentioned changes in the brains of 1,2-DCE-intoxicated mice. Altogether, the findings from this research indicated that microglial activation might play an important role in triggering neuroinflammation, and hence may contribute to brain edema formation; additionally, the findings suggested that molecular crosstalk between reactive astrocytes and activated microglia may amplify the neuroinflammatory reaction, which could induce secondary brain injury in 1,2-DCE-intoxicated mice.


2019 ◽  
Vol 20 (14) ◽  
pp. 3386
Author(s):  
Chang Kim ◽  
Soo Joo ◽  
In Kim ◽  
Hoon-In Choi ◽  
Eun Bae ◽  
...  

G-protein-coupled receptor 40 (GPR40) has an anti-apoptotic effect in pancreatic β-cells. However, its role in renal tubular cell apoptosis remains unclear. To explore the role of GPR40 in renal tubular apoptosis, a two-week unilateral ureteral obstruction (UUO) mouse model was used. The protein expression of GPR40 was decreased, while the Bax/Bcl-2 protein expression ratio, the expression of tumor necrosis factor (TNF)-α mRNA, and angiotensin II type 1 receptor (AT1R) protein were increased in mice with UUO. In vitro, pretreatment of rat proximal tubular (NRK52E) cells with GW9508, a GPR40 agonist, attenuated the decreased cell viability, increased the Bax/Bcl-2 protein expression ratio, increased protein expression of cleaved caspase-3 and activated the nuclear translocation of nuclear factor-κB (NF-κB) p65 subunit induced by TNF-α treatment. TNF-α treatment significantly increased the expression of AT1R protein and the generation of reactive oxygen species (ROS), whereas GW9508 treatment markedly reversed these effects. Pretreatment with GW1100, a GPR40 antagonist, or silencing of GPR40 in NRK52E cells promoted the increased expression of the cleaved caspase-3 protein by TNF-α treatment. Our results demonstrate that decreased expression of GPR40 is associated with apoptosis via TNF-α and AT1R in the ureteral obstructed kidney. The activation of GPR40 attenuates TNF-α-induced apoptosis by inhibiting AT1R expression and ROS generation through regulation of the NF-κB signaling pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Qi ◽  
Bo Yang ◽  
Cailing Ren ◽  
Jian Fu ◽  
Jun Zhang

We aimed to investigate whether swimming exercise could improve insulin resistance (IR) by regulating tripartite motif family protein 72 (TRIM72) expression and AKT signal pathway in rats fed with high-fat diet. Five-week-old rats were classified into 3 groups: standard diet as control (CON), high-fat diet (HFD), and HFD plus swimming exercise (Ex-HFD). After 8 weeks, glucose infusion rate (GIR), markers of oxidative stress, mRNA and protein expression of TRIM72, protein of IRS, p-AKTSer473, and AKT were determined in quadriceps muscles. Compared with HFD, the GIR, muscle SOD, and GSH-Px were significantly increased (p<0.05, resp.), whereas muscle MDA and 8-OHdG levels were significantly decreased (p<0.05andp<0.01) in Ex-HFD. Expression levels of TRIM72 mRNA and protein in muscles were significantly reduced (p<0.05andp<0.01), whereas protein expression levels of IRS-1, p-AKTSer473, and AKT were significantly increased in Ex-HFD compared with HFD (p<0.01,p<0.01, andp<0.05). These results suggest that an 8-week swimming exercise improves HFD-induced insulin resistance maybe through a reduction of TRIM72 in skeletal muscle and enhancement of AKT signal transduction.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiaolin Xu ◽  
Shuqin Yu ◽  
Xiaoyuan Liu ◽  
Ying Feng

Objective. Ultrasound-targeted microbubble destruction (UTMD) technique has recently been developed as a nonviral delivery of gene therapy. This study aimed at investigating the survival and apoptosis of ovarian cancer cell line OVCA-433 by inhibiting Livin expression through ultrasound-targeted microbubble destruction. Methods. We synthesized a targeted microbubble agent for UTMD-mediated shRNA against Livin gene in human ovarian cancer OVCA-433 cells. Lipid microbubbles were conjugated with a luteinizing hormone-releasing hormone analog (LHRHa) by an avidin-biotin linkage to target the ovarian cancer OVCA-433 cells expressing LHRH receptors. The microbubbles were mixed with the recombinant plasmid harboring shRNA-Livin. shRNA-Livin was transfected into OVCA-433 cells upon exposure to 1 MHz pulsed ultrasound beam (0.5 W/cm2) for 8 s. Cell survival was measured by the MTT assay, cell apoptosis by flow cytometry using annexin V/PI double staining, and cell ultrastructure by using the transmission electron microscope. The mRNA and protein expression levels of caspase-3 and caspase-8 were detected by RT-qPCR and western blotting. Results. UTMD-mediated delivery of shRNA-Livin remarkably reduced the survival of OVCA-433 cells but promoted the apoptosis compared with shRNA-Livin alone, shRNA-Livin plus nontargeted microbubbles, and shRNA-Livin plus LHRHa-conjugated microbubbles containing shRNA-Livin with or without exposure to ultrasound pulses. It was also found that UTMD-mediated delivery of shRNA-Livin notably declined the mRNA and protein expression levels of caspase-3 and caspase-8 in OVCA-433 cells compared with shRNA-Livin alone, shRNA-Livin plus nontargeted microbubbles, and shRNA-Livin plus LHRHa-conjugated microbubbles containing shRNA-Livin with or without exposure to ultrasound pulses. Conclusion. Our experiment verifies the hypothesis that ultrasound mediation of targeted microbubbles can enhance the transfection efficiency of shRNA-Livin in ovarian cancer cells.


Chemotherapy ◽  
2018 ◽  
Vol 63 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Jing Chen ◽  
Cheng Liu ◽  
Qin-Qing Yang ◽  
Rui-Bin Ma ◽  
Ying Ke ◽  
...  

Aims: Isoliquiritigenin (ISL) is a flavonoid, that has been shown to have antioxidant, vasorelaxant, anti-inflammatory, and antitumor activities. This study aimed to explore the antitumor effect of ISL on human osteosarcoma U2OS cells and investigate the mechanism of this effect. Methods: The effect of ISL on osteosarcoma U2OS cell proliferation, invasion, migration, and apoptosis were determined by a CCK8 assay, a transwell invasion assay, a transwell migration assay, and fluorescence-activated cell sorting, respectively. In addition, the protein expression levels of Bcl2, Bax, active Caspase-3, Akt, mTOR, p70, and Cyclin D1 were detected by western blotting. Results: ISL suppressed cell proliferation, inhibited invasion and migration, and promoted apoptosis in U2OS cells. After treatment with ISL, the protein expression levels of Bax and active Caspase-3 increased, while the level of Bcl-2 declined significantly. Furthermore, the phosphorylation levels of Akt and mTOR declined significantly compared with that of the control. Conclusion: ISL could retard proliferation and promote apoptosis of U2OS cells possibly by suppressing the PI3K/Akt signalling pathway, indicating that it might be a potential therapeutic agent for osteosarcoma treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bensheng Wu ◽  
Qing Zhou ◽  
Zongqi He ◽  
Xiaopeng Wang ◽  
Xueliang Sun ◽  
...  

Background. The flower of Abelmoschus manihot (AM) has been widely used in the treatment of chronic inflammatory diseases, including ulcerative colitis. This paper aimed to confirm the therapeutic effect of AM on ulcerative colitis (UC) and explore its mechanism. Methods. Mouse models were induced by 2.5% dextran sulfate sodium (DSS) and treated with AM. UC signs, symptoms, colon macroscopic lesion scores, and disease activity index (DAI) scores were observed. Colon levels of interleukin- (IL-) 6, IL-1β, IL-18, IL-17, tumor necrosis factor- (TNF-) α, and IL-10 were quantified by ELISA. The colon protein expression levels of NLRP3, ASC, caspase 1 p10, β-arrestin1, ZO-1, occludin-1, and claudin-1 were examined by immunohistochemistry and western blotting. The mRNA levels of IL-1β, IL-18, NLRP3, ASC, and caspase 1 p10 in the colon were determined by real-time quantitative polymerase chain reaction (qPCR). Results. After treatment with AM, the mortality of mice, pathological damage to the colon, splenomegaly, and the spleen coefficient were decreased. AM reduced the levels of proinflammatory cytokines (IL-6, IL-1β, IL-18, IL-17, and TNF-α) and increased the level of IL-10. The mRNA expression levels of NLRP3, ASC, and caspase 1 in colon tissue were decreased by AM in a dose-dependent manner. In addition, AM also reduced the protein expression of NLRP3, ASC, caspase 1 p10, IL-1β, IL-18, and β-arrestin1 in the colon tissue of model mice. Western blot analysis confirmed that AM increased the expression of occludin-1, claudin-1, and ZO-1 in a dose-dependent manner. Conclusion. This study shows that AM has a significant therapeutic effect on mice with UC, and the mechanism may be related to the inhibition of the β-arrestin1/NLRP3 inflammasome signaling pathway and the protection of intestinal barrier function.


Sign in / Sign up

Export Citation Format

Share Document