scholarly journals Sexual dimorphism in floral scents of the neotropical orchid Catasetum arietinum and its possible ecological and evolutionary significance

AoB Plants ◽  
2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Katharina Brandt ◽  
Isabel Cristina Machado ◽  
Daniela Maria do Amaral Ferraz Navarro ◽  
Stefan Dötterl ◽  
Manfred Ayasse ◽  
...  

Abstract Dioecy in angiosperms is often associated with sexual dimorphism in floral traits other than the sexual organs. Species of the neotropical orchid genus Catasetum produce unisexual flowers characterized by a remarkable morphological sexual dimorphism. Catasetum species emit strong floral perfumes that act as both signal and reward for male euglossine bee pollinators. Although the role of floral perfumes of Catasetum in attracting euglossine pollinators is well investigated, little is known about whether perfumes differ between floral sexes and, if they do, whether this chemical dimorphism influences the pollination ecology of the plants. Taking Catasetum arietinum as a model species, our aim was to observe the behaviour of pollinators on male and female flowers and to compare scent properties (i.e. chemical composition, total amount and temporal fluctuation) of male and female flowers. Floral scent samples were collected by using dynamic headspace methods and were analysed via gas chromatography coupled with mass spectroscopy (GC-MS). Catasetum arietinum is pollinated by males of two Euglossa species (i.e. E. nanomelanotricha and E. securigera). Bees approached male and female inflorescences of C. arietinum in similar proportions but landed significantly more often and spent more time on female flowers, which emitted more scent than male flowers. Furthermore, the amount of scent emitted varied across the different times of sampling, corresponding to the pattern of the diel foraging activity of pollinating bees on male and female flowers. The chemical composition of scents differed significantly between sexes. The two major compounds (Z)-methyl-p-methoxycinnamate and (E)-geranyl geraniol contributed most to this difference. This is the first case of sexual dimorphism reported in orchid floral perfumes. We discuss the influence of sex-specific floral scents on the behaviour of euglossine pollinators and offer new insights into the ecological and evolutionary significance of divergence in floral scents among dioecious plants.

2013 ◽  
Vol 280 (1772) ◽  
pp. 20132280 ◽  
Author(s):  
Tomoko Okamoto ◽  
Atsushi Kawakita ◽  
Ryutaro Goto ◽  
Glenn P. Svensson ◽  
Makoto Kato

Zoophilous flowers often transmit olfactory signals to attract pollinators. In plants with unisexual flowers, such signals are usually similar between the sexes because attraction of the same animal to both male and female flowers is essential for conspecific pollen transfer. Here, we present a remarkable example of sexual dimorphism in floral signal observed in reproductively highly specialized clades of the tribe Phyllantheae (Phyllanthaceae). These plants are pollinated by species-specific, seed-parasitic Epicephala moths (Gracillariidae) that actively collect pollen from male flowers and pollinate the female flowers in which they oviposit; by doing so, they ensure seeds for their offspring. We found that Epicephala -pollinated Phyllanthaceae plants consistently exhibit major qualitative differences in scent between male and female flowers, often involving compounds derived from different biosynthetic pathways. In a choice test, mated female Epicephala moths preferred the scent of male flowers over that of female flowers, suggesting that male floral scent elicits pollen-collecting behaviour. Epicephala pollination evolved multiple times in Phyllantheae, at least thrice accompanied by transition from sexual monomorphism to dimorphism in floral scent. This is the first example in which sexually dimorphic floral scent has evolved to signal an alternative reward provided by each sex, provoking the pollinator's legitimate altruistic behaviour.


2002 ◽  
Vol 80 (11) ◽  
pp. 1203-1208 ◽  
Author(s):  
Lorena Ashworth ◽  
Leonardo Galetto

In dioecious and monoecious plants that depend on animal vectors for reproduction, pollinators have to be attracted to male and female flowers for pollination to be effective. In the monoecious Cucurbita maxima ssp. andreana, male flowers are produced in greater quantity, are spatially more exposed to pollinators and offer pollen in addition to nectar as floral rewards. Nectar traits were compared between male and female flowers to determine any differences in the characteristics of the main reward offered to pollinators. Nectar chemical composition and sugar proportions were similar between flower types. Total nectar sugar production per female flower was threefold higher than per male flower, and nectar removal did not have any effect on total nectar production in both flower morphs. Pollinators reduced nectar standing crops to similar and very scarce amounts in both flower types. Results indicate indirectly that pollinators are consuming more nectar from female flowers, suggesting that the higher nectar production in female flowers may be a reward-based strategy to achieve the high female reproductive output observed in this species.Key words: Cucurbitaceae, Cucurbita maxima ssp. andreana, nectar production, nectar sugar composition, removal effects, standing crop.


2020 ◽  
Vol 17 (2) ◽  
pp. 81
Author(s):  
Van Basten Tambunan ◽  
Bandung Sahari ◽  
Damayanti Buchori ◽  
Purnama Hidayat

<p>The African oil palm weevil,<strong> </strong><em>Elaeidobius kamerunicus</em> is an effective pollinator of oil palm. Each individual palm produces exclusively male or female inflorescence so that the success of pollination depends on the ability of the pollinator to transfer pollen from male to female flowers. The objective of this research was to study the amount of pollen carried by <em>E. kamerunicus</em> between male and female inflorescences (pollen load) and the amount of pollen carried on each part of the weevil’s body (pollen distribution). Fifty each of male and female  <em>E. kamerunicus</em> individuals were collected from male and female flowers on trees in 3 locations: Siantar (North Sumatra), Dramaga (West Java), and Morowali (Central Sulawesi). Data on pollen load and pollen distribution on the weevil’s body were analyzed using <em>ImageJ</em> software. Results show that <em>E. kamerunicus</em> individuals collected more pollen from male flowers than from female flowers. In addition, male insects carried more pollen on their bodies than female insects. Pollen distribution on weevil body parts was highest on the elytra, followed by the thorax, abdomen, legs, and head respectively.</p>


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval

Abstract Genetics: The chromosome number reported for Cucumis anguria is 2n=24 (Ramachandran and Narayan, 1990; Flora of North America Editorial Committee, 2020). Reproductive Biology: Cucumis anguria is a monoecious species, with individual male and female flowers appearing on both plants, that depends of pollinators to transfer pollen grains in order to produce fruits. Although self-fertile, a degree of outcrossing results from insect pollination. Zagorcheva (1988) has suggested that C. anguria may also be a facultative apomict. The flowering season is of about 55-58 days. Male flowers appear before female flowers and both male and female flowers remain open for one day (from 7:30 am to 4:00 pm). The relationship between male and female flowers is on average 5.5 male flowers for each female flower. The greater number of male flowers compared to female flowers produces a greater flow of pollen in the crop and ensures pollination. Flowers are visited and pollinated by insects. In a study in Brazil, the most important visitor was Apis mellifera (72% of all visits) followed by native bees from the genera Plebeia sp. (16.7%), Exomalopsis sp. (8.3%) and Melissodes sp. (2.8%). Flowers are also visited by butterflies (Malerbo-Souza et al., 2020). Physiology and Phenology: Cucumis anguria is an annual species. Early growth is upright, followed by branching at the base to produce several trailing stems. Within its native distribution range, this species germinates in a few days during the summer rains when night temperatures are above 12°C and the soil is sufficiently wet. When plants are about 2-3 m length, they start to develop flowers. Fruits are often produced within 60 days after germination. Plants may produce up to 50 fruits per stem. Fruits remain attached to the withered annual stems long after these have died back at the end of the growing season (Wilkins-Ellert, 2004). Photoperiod is important and longer days coupled with higher temperatures confines plants to the production of male flowers. Shorter days and a drop in temperature stimulate the production of female flowers. Fruiting occurs within 60 days of planting and fruit are produced continuously, with as many as 50 fruits per plant produced during the growing season (Wilkins-Ellert, 2004). Environmental Requirements: Cucumis anguria prefers to grow in tropical and subtropical climates. It grows best in areas with mean annual temperatures ranging from 15°C to 28°C (tolerates 8°C-35°C) and mean annual rainfall between 800 mm-1000 mm (tolerates 300 mm-1700 mm). It is well adapted to soils with low fertility and is adapted to grow in a wide range of soil types, including Kalahari sands (regosols), red clays and black cotton soils (vertisols) with pH in the range 6-7.5 (tolerates 5.5 - 8.3), but it grows best on well drained sandy soils (Fernandes, 2011). This species is sensitive to cold and does not tolerate frost (Wilkins-Ellert, 2004; Useful Tropical Plants, 2020).


1982 ◽  
Vol 30 (3) ◽  
pp. 251 ◽  
Author(s):  
CA McConchie ◽  
SC Ducker ◽  
RB Knox

Floral development of male and female flowers in Amphibolis antarctica and A. griffithii was followed from the initiation of the floral meristem to the mature flower. In A. antarctica the flowers form on lateral branches, while in A. griffithii they may also develop terminally on an upright branch from the rhizome. A. griffithii and. to a lesser extent, A. antarctica, show sympodial branching from the floral axis. The female flower develops from a pair of primordia; in A. griffithii these primordia each develop three stigmas, which in A. antarctica subsequently may form secondary branches. The. ovary wall bears the initials of the future grappling apparatus, comprising four comb initials in A. grijjjthii and a further inner set of horns in A. antarctica. The female flowers of Amphibolis are unique amongst the members of the Cymodoceaceae in being subtended by a bract or perianth, similar to the male flowers. Differences between the floral vasculature and intravaginal squamulae are presented for both species.


2014 ◽  
Vol 44 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Claudenir Simões Caires ◽  
Kadja Milena Gomes-Bezerra ◽  
Carolyn Elinore Barnes Proença

The genus Peristethium, characterized by determinate inflorescences protected by deciduous bracts, occurs in the northwest of South America, as well as Costa Rica and Panama. The main objective of this paper was to transfer one species to what we believe is its correct generic placement in Peristethium, that likewise implies in a shift of the genus' distribution beyond the Amazon. A new combination, Peristethium reticulatum, is proposed, based on Struthanthus reticulatus, described from Tocantins in 1980. The sexual dimorphism of the inflorescences of P. reticulatum (sessile male flowers and pedicellate female flowers) associated with male inflorescences that are inserted at leafless nodes are unique within the genus. The male flowers have dimorphic stamens, well-developed anthers and a pistiloid, whilst female flowers have robust styles and stigmas, and much reduced staminodes. Peristethium reticulatum and P. polystachyum occurs in the Amazon regions of Brazil, with the former recorded also in the ecotone with the Central Brazilian savannas (Cerrados).


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zeyu Cai ◽  
Congcong Yang ◽  
Jun Liao ◽  
Haifeng Song ◽  
Sheng Zhang

AbstractDioecious species evolved from species with monomorphic sex systems in order to achieve overall fitness gains by separating male and female functions. As reproductive organs, unisexual flowers have different reproductive roles and exhibit conspicuous sexual dimorphism. To date, little is known about the temporal variations in and molecular mechanisms underlying the morphology and reproductive costs of dioecious flowers. We investigated male and female flowers of Salix paraplesia in three flowering stages before pollination (the early, blooming and late stages) via transcriptional sequencing as well as metabolite content and phenotypic analysis. We found that a large number of sex-biased genes, rather than sex-limited genes, were responsible for sexual dimorphism in S. paraplesia flowers and that the variation in gene expression in male flowers intensified this situation throughout flower development. The temporal dynamics of sex-biased genes derived from changes in reproductive function during the different flowering stages. Sexually differentiated metabolites related to respiration and flavonoid biosynthesis exhibited the same bias directions as the sex-biased genes. These sex-biased genes were involved mainly in signal transduction, photosynthesis, respiration, cell proliferation, phytochrome biosynthesis, and phenol metabolism; therefore, they resulted in more biomass accumulation and higher energy consumption in male catkins. Our results indicated that sex-biased gene expression in S. paraplesia flowers is associated with different reproductive investments in unisexual flowers; male flowers require a greater reproductive investment to meet their higher biomass accumulation and energy consumption needs.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12328
Author(s):  
Baiting Qin ◽  
Xiujun Lu ◽  
Xiaomei Sun ◽  
Jianguo Cui ◽  
Jifeng Deng ◽  
...  

Juglans mandshurica Maxim is a hermaphroditic plant belonging to the genus Juglans in the family Juglandaceae. The pollination period of female flowers is different from the loose powder period of male flowers on the same tree. In several trees, female flowers bloom first, whereas in others, male flowers bloom first. In this study, male and female flower buds of J. mandshurica at the physiological differentiation stage were used. Illumina-based transcriptome sequencing was performed, and the quality of the sequencing results was evaluated and analyzed. A total of 138,138 unigenes with an average length of 788 bp were obtained. There were 8,116 differentially expressed genes (DEGs); 2,840 genes were upregulated, and 5,276 genes were downregulated. The DEGs were classified by Gene Ontology and analyzed by Kyoto Encyclopedia of Genes and Genomes. The signal transduction factors involved in phytohormone synthesis were selected. The results displayed that ARF and SAUR were expressed differently in the auxin signaling pathway. Additionally, DELLA protein (a negative regulator of gibberellin), the cytokinin synthesis pathway, and A-ARR were downregulated. On April 2nd, the contents of IAA, GA, CTK, ETH and SA in male and female flower buds of two types of J. mandshurica were opposite, and there were obvious genes regulating gender differentiation. Overall, we found that the sex differentiation of J. mandshurica was related to various hormone signal transduction pathways, and hormone signal transduction plays a leading role in regulation.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Daihong Huang ◽  
Fuchen Shi ◽  
Minwei Chai ◽  
Ruili Li ◽  
Houhun Li

Plants of theGlochidion(Phyllanthaceae) genus are pollinated exclusively by host-specificEpicephala(Gracillariidae) moths. Floral scent has been thought to play key role in the obligate pollination mutualism betweenGlochidionplants andEpicephalamoths, but few studies have been reported about chemical variation in floral volatiles ofGlochidionspecies in China. Floral volatiles of male and female flowers of fiveGlochidionspecies in south China were collected by dynamic headspace absorption technique and then were chemically analyzed by using gas chromatography-mass spectrometry. A total of 69 compounds were identified from floral scents of five investigated species.Glochidion hirsutumandG.zeylanicumshowed no qualitative differences in floral scent, whereas there were clear variations of floral scent among other species (G. eriocarpum,G.daltonii, andG. sphaerogynum) and also they distinctly differed from these two species. Male flowers emitted significantly more scent than female flowers.Glochidionplants exhibited qualitative and quantitative differences in floral scent between two sexes of flowers. The findings suggest that the volatile variation of floral scent amongGlochidionspecies reflects adaptations to specific pollinators. Sexual dimorphism in floral scent has evolved to signal alternative rewards provided by each sex toEpicephalamoths.


2020 ◽  
Author(s):  
Lin-Lin Wang ◽  
Na-Cai Yang ◽  
Min-Yu Chen ◽  
Yong-Ping Yang ◽  
Yuan-Wen Duan

Abstract Aims Sexual dimorphism is a common trait in plants with sex separation, which could influence female and male functions differently. In a subdioecious population of Dasiphora glabra on the Qinghai-Tibet Plateau, we investigated sexual dimorphism of floral traits and their effects on pollinator visitation, pollen flow and seed production. We also examined differences in genome size of hermaphroditic and dioecious plants. Methods We examined sexual dimorphism in flower number, flower size, and pollen and ovule production in a subdioecious population of D. glabra. We compared pollinator visitation, pollen dispersal, and seed production between sexes. We also examined the genome size of three sex morphs using flow cytometry. Important findings The number of hermaphroditic plants was significantly more than that of male and female plants, and dioecious plants accounted for ca. 40% in the study population. Hermaphroditic plants produced significantly more flowers than male and female plants. Flower size of male flowers was significantly larger than that of female and hermaphroditic flowers. Male flowers did not produce more pollen grains than hermaphroditic flowers, but female flowers produced more ovules than hermaphroditic flowers. Flies were the most frequent flower visitors and preferred large flowers, but their movements between flowers did not show any preference to large flowers. Simulated pollen flows suggested that effective pollen transfer was generally low for both hermaphroditic and male flowers, corresponding to the low seed set of naturally pollinated flowers. DNA contents of male and female plants were ca. four times than those of hermaphroditic plants. These results suggest male and female individuals have undergone polyploidy events and thus are not compatible with hermaphroditic individuals. Sexual dimorphism in floral traits in relation to pollination of dioicous plants might show an advantage in female and male functions, but this advantage is masked largely by low effectiveness of pollen transfer.


Sign in / Sign up

Export Citation Format

Share Document