Acorus calamus extract and its component α-asarone attenuate murine hippocampal neuronal cell death induced by l-glutamate and tunicamycin

2021 ◽  
Vol 85 (3) ◽  
pp. 493-501
Author(s):  
Masashi Mikami ◽  
Ohba Takuya ◽  
Yuta Yoshino ◽  
Shinsuke Nakamura ◽  
Kenichi Ito ◽  
...  

ABSTRACT The Asian traditional medicinal plant Acorus calamus and its component α-asarone exhibited various biological activities, such as antiinflammation and antioxidant effects. In the present study, we investigated the in vitro effects of A. calamus extract and α-asarone on oxidative stress- and endoplasmic reticulum (ER) stress–induced cell death in hippocampal HT22 cells. A. calamus extract and α-asarone both significantly suppressed cell death induced by the oxidative stress inducer l-glutamate and ER stress inducer tunicamycin. A. calamus extract and α-asarone also significantly reduced reactive oxygen species (ROS) production induced by l-glutamate. Moreover, A. calamus extract and α-asarone suppressed the phosphorylation of protein kinase RNA-like ER kinase (PERK) induced by tunicamycin. These results suggest that A. calamus extract and α-asarone protect hippocampal cells from oxidative stress and ER stress by decreasing ROS production and suppressing PERK signaling, respectively. α-Asarone has potential as a potent therapeutic candidate for neurodegenerative diseases, including Alzheimer's disease.

2019 ◽  
Vol 43 (2) ◽  
pp. 326-334 ◽  
Author(s):  
Dong Hoi Kim ◽  
Dae Won Kim ◽  
Bo Hyun Jung ◽  
Jong Hun Lee ◽  
Heesu Lee ◽  
...  

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 144 ◽  
Author(s):  
Chang-Hyun Park ◽  
Ji Hoon Song ◽  
Su-Nam Kim ◽  
Ji Hwan Lee ◽  
Hae-Jeung Lee ◽  
...  

In the central nervous system, glutamate is a major excitable neurotransmitter responsible for many cellular functions. However, excessive levels of glutamate induce neuronal cell death via oxidative stress during acute brain injuries as well as chronic neurodegenerative diseases. The present study was conducted to examine the effect of tetrahydrocurcumin (THC), a major secondary metabolite of curcumin, and its possible mechanism against glutamate-induced cell death. We prepared THC using curcumin isolated from Curcuma longa (turmeric) and demonstrated the protective effect of THC against glutamate-induced oxidative stress in HT22 cells. THC abrogated glutamate-induced HT22 cell death and showed a strong antioxidant effect. THC also significantly reduced intracellular calcium ion increased by glutamate. Additionally, THC significantly reduced the accumulation of intracellular oxidative stress induced by glutamate. Furthermore, THC significantly diminished apoptotic cell death indicated by annexin V-positive in HT22 cells. Western blot analysis indicated that the phosphorylation of mitogen-activated protein kinases including c-Jun N-terminal kinase, extracellular signal-related kinases 1/2, and p38 by glutamate was significantly diminished by treatment with THC. In conclusion, THC is a potent neuroprotectant against glutamate-induced neuronal cell death by inhibiting the accumulation of oxidative stress and phosphorylation of mitogen-activated protein kinases.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Youngmun Lee ◽  
Sunyoung Kim ◽  
Yeonsoo Oh ◽  
Young-Mi Kim ◽  
Young-Won Chin ◽  
...  

Among a series of xanthones identified from mangosteen, the fruit of Garcinia mangostana L. (Guttifereae), α- and γ-mangostins are known to be major constituents exhibiting diverse biological activities. However, the effects of γ-mangostin on oxidative neurotoxicity and impaired memory are yet to be elucidated. In the present study, the protective effect of γ-mangostin on oxidative stress-induced neuronal cell death and its underlying action mechanism(s) were investigated and compared to that of α-mangostin using primary cultured rat cortical cells. In addition, the effect of orally administered γ-mangostin on scopolamine-induced memory impairment was evaluated in mice. We found that γ-mangostin exhibited prominent protection against H2O2- or xanthine/xanthine oxidase-induced oxidative neuronal death and inhibited reactive oxygen species (ROS) generation triggered by these oxidative insults. In contrast, α-mangostin had no effects on the oxidative neuronal damage or associated ROS production. We also found that γ-mangostin, not α-mangostin, significantly inhibited H2O2-induced DNA fragmentation and activation of caspases 3 and 9, demonstrating its antiapoptotic action. In addition, only γ-mangostin was found to effectively inhibit lipid peroxidation and DPPH radical formation, while both mangostins inhibited β-secretase activity. Furthermore, we observed that the oral administration of γ-mangostin at dosages of 10 and 30 mg/kg markedly improved scopolamine-induced memory impairment in mice. Collectively, these results provide both in vitro and in vivo evidences for the neuroprotective and memory enhancing effects of γ-mangostin. Multiple mechanisms underlying this neuroprotective action were suggested in this study. Based on our findings, γ-mangostin could serve as a potentially preferable candidate over α-mangostin in combatting oxidative stress-associated neurodegenerative diseases including Alzheimer’s disease.


2006 ◽  
Vol 69 (9) ◽  
pp. S357-S360 ◽  
Author(s):  
H. J. Heo ◽  
D.O. Kim ◽  
S.J. Choi ◽  
D.H. Shin ◽  
C.Y. Lee

2005 ◽  
Vol 25 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Takeshi Hayashi ◽  
Atsushi Saito ◽  
Shuzo Okuno ◽  
Michel Ferrand-Drake ◽  
Robert L Dodd ◽  
...  

The endoplasmic reticulum (ER), which plays a role in apoptosis, is susceptible to oxidative stress. Because superoxide is produced in the brain after ischemia/reperfusion, oxidative injury to this organelle may be implicated in ischemic neuronal cell death. Activating transcription factor-4 (ATF-4) and C/EBP-homologous protein (CHOP), both of which are involved in apoptosis, are induced by severe ER stress. Using wild-type and human copper/zinc superoxide dismutase transgenic rats, we observed induction of these molecules in the brain after global cerebral ischemia and compared them with neuronal degeneration. In ischemic, wild-type brains, expression of ATF-4 and CHOP was increased in the hippocampal CA1 neurons that would later undergo apoptosis. Transgenic rats had a mild increase in ATF-4 and CHOP and minimal neuronal degeneration, indicating that superoxide was involved in ER stress-induced cell death. We further confirmed attenuation on induction of these molecules in transgenic mouse brains after focal ischemia. When superoxide was visualized with ethidium, signals for ATF-4 and superoxide overlapped in the same cells. Moreover, lipids in the ER were robustly peroxidized by ischemia but were attenuated in transgenic animals. This indicates that superoxide attacked and damaged the ER, and that oxidative ER damage is implicated in ischemic neuronal cell death.


2015 ◽  
Vol 35 (12) ◽  
pp. 2043-2051 ◽  
Author(s):  
Joo Eun Jung ◽  
Hulya Karatas ◽  
Yu Liu ◽  
Ayfer Yalcin ◽  
Joan Montaner ◽  
...  

Oxidative stress is a major brain injury mechanism after ischemic stroke. 12/15-lipoxygenase (12/15-LOX) is a key mediator of oxidative stress, contributing to neuronal cell death and vascular leakage. Nonetheless, the mechanism leading to its upregulation is currently unknown. We show here that Signal Transducers and Activators of Transcription (STATs), specifically STAT6 and possibly STAT1, increase transcription of 12/15-LOX in neuronal cells. Both p-STAT6 and −1 bound to specific STAT binding sites in the mouse 12/15-LOX promoter. Small interfering RNA (siRNA) knockdown showed STAT6 to be the dominant regulator, reducing 12/15-LOX promoter activation and cell death in oxidatively stressed HT22 cells. STAT6 siRNA efficiently prevented the increase of 12/15-LOX in murine primary neurons, both after induction of oxidative stress and after oxygen-glucose deprivation. Early activation of STAT6 and STAT1 in mice was consistent with a role in regulating 12/15-LOX in focal ischemia. Brains of human stroke patients showed increased p-STAT6 and p-STAT1 in the peri-infarct region, along with 12/15-LOX and markers of apoptosis. These results link STAT6 and STAT1 to the 12/15-LOX damage pathway and suggest disregulation of STAT-dependent transcription as injury mechanism in stroke. Selectively targeting STATs may thus be a novel therapeutic approach to reducing brain injury after a stroke.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anne Christmann ◽  
Manuela Gries ◽  
Patrik Scholz ◽  
Pascal L. Stahr ◽  
Jessica Ka Yan Law ◽  
...  

Abstract Motoric disturbances in Parkinson’s disease (PD) derive from the loss of dopaminergic neurons in the substantia nigra. Intestinal dysfunctions often appear long before manifestation of neuronal symptoms, suggesting a strong correlation between gut and brain in PD. Oxidative stress is a key player in neurodegeneration causing neuronal cell death. Using natural antioxidative flavonoids like Rutin, might provide intervening strategies to improve PD pathogenesis. To explore the potential effects of micro (mRutin) compared to nano Rutin (nRutin) upon the brain and the gut during PD, its neuroprotective effects were assessed using an in vitro PD model. Our results demonstrated that Rutin inhibited the neurotoxicity induced by A53T α-synuclein (Syn) administration by decreasing oxidized lipids and increasing cell viability in both, mesencephalic and enteric cells. For enteric cells, neurite outgrowth, number of synaptic vesicles, and tyrosine hydroxylase positive cells were significantly reduced when treated with Syn. This could be reversed by the addition of Rutin. nRutin revealed a more pronounced result in all experiments. In conclusion, our study shows that Rutin, especially the nanocrystals, are promising natural compounds to protect neurons from cell death and oxidative stress during PD. Early intake of Rutin may provide a realizable option to prevent or slow PD pathogenesis.


2019 ◽  
Vol 20 (10) ◽  
pp. 2504 ◽  
Author(s):  
Mehtab Khan ◽  
Bart P. F. Rutten ◽  
Myeong Ok Kim

Oxidative stress has been considered as the main mediator in neurodegenerative diseases. A high-fat diet (HFD) and metabolic diseases result in oxidative stress generation, leading to various neurodegenerative diseases via molecular mechanisms that remain largely unknown. Protein kinases play an important role in the homeostasis between cell survival and cell apoptosis. The mammalian sterile 20-like kinase-1 (MST1) protein kinase plays an important role in cellular apoptosis in different organ systems, including the central nervous system. In this study, we evaluated the MST1/c-Jun N-terminal kinase (JNK) dependent oxidative damage mediated cognitive dysfunction in HFD-fed mice and stress-induced hippocampal HT22 (mice hippocampal) cells. Our Western blot and immunofluorescence results indicate that HFD and stress-induced hippocampal HT22 cells activate MST1/JNK/Caspase-3 (Casp-3) signaling, which regulates neuronal cell apoptosis and beta-amyloid-cleaving enzyme (BACE1) expression and leads to impaired cognition. Moreover, MST1 expression inhibition by shRNA significantly reduced JNK/Casp-3 signaling. Our in vivo and in vitro experiments mimicking metabolic stress, such as a high-fat diet, hyperglycemia, and an inflammatory response, determined that MST1 plays a key regulatory role in neuronal cell death and cognition, suggesting that MST1 could be a potential therapeutic target for numerous neurodegenerative diseases.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 361
Author(s):  
Gabriel Gonzalez ◽  
Jiří Grúz ◽  
Cosimo Walter D’Acunto ◽  
Petr Kaňovský ◽  
Miroslav Strnad

Cytokinins are adenine-based phytohormones that regulate key processes in plants, such as cell division and differentiation, root and shoot growth, apical dominance, branching, and seed germination. In preliminary studies, they have also shown protective activities against human neurodegenerative diseases. To extend knowledge of the protection (protective activity) they offer, we investigated activities of natural cytokinins against salsolinol (SAL)-induced toxicity (a Parkinson’s disease model) and glutamate (Glu)-induced death of neuron-like dopaminergic SH-SY5Y cells. We found that kinetin-3-glucoside, cis-zeatin riboside, and N6-isopentenyladenosine were active in the SAL-induced PD model. In addition, trans-, cis-zeatin, and kinetin along with the iron chelator deferoxamine (DFO) and the necroptosis inhibitor necrostatin 1 (NEC-1) significantly reduced cell death rates in the Glu-induced model. Lactate dehydrogenase assays revealed that the cytokinins provided lower neuroprotective activity than DFO and NEC-1. Moreover, they reduced apoptotic caspase-3/7 activities less strongly than DFO. However, the cytokinins had very similar effects to DFO and NEC-1 on superoxide radical production. Overall, they showed protective activity in the SAL-induced model of parkinsonian neuronal cell death and Glu-induced model of oxidative damage mainly by reduction of oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document