scholarly journals Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins

2020 ◽  
Vol 36 (18) ◽  
pp. 4729-4738 ◽  
Author(s):  
Jian Zhang ◽  
Sina Ghadermarzi ◽  
Lukasz Kurgan

Abstract Motivation There are over 30 sequence-based predictors of the protein-binding residues (PBRs). They use either structure-annotated or disorder-annotated training datasets, potentially creating a dichotomy where the structure-/disorder-specific models may not be able to cross-over to accurately predict the other type. Moreover, the structure-trained predictors were shown to substantially cross-predict PBRs among residues that interact with non-protein partners (nucleic acids and small ligands). We address these issues by performing first-of-its-kind comparative study of a representative collection of disorder- and structure-trained predictors using a comprehensive benchmark set with the structure- and disorder-derived annotations of PBRs (to analyze the cross-over) and the protein-, nucleic acid- and small ligand-binding proteins (to study the cross-predictions). Results Three predictors provide accurate results: SCRIBER, ANCHOR and disoRDPbind. Some of the structure-trained methods make accurate predictions on the structure-annotated proteins. Similarly, the disorder-trained predictors predict well on the disorder-annotated proteins. However, the considered predictors generally fail to cross-over, with the exception of SCRIBER. Our study also reveals that virtually all methods substantially cross-predict PBRs, except for SCRIBER for the structure-annotated proteins and disoRDPbind for the disorder-annotated proteins. We formulate a novel hybrid predictor, hybridPBRpred, that combines results produced by disoRDPbind and SCRIBER to accurately predict disorder- and structure-annotated PBRs. HybridPBRpred generates accurate results that cross-over structure- and disorder-annotated proteins and produces relatively low amount of cross-predictions, offering an accurate alternative to predict PBRs. Availability and implementation HybridPBRpred webserver, benchmark dataset and supplementary information are available at http://biomine.cs.vcu.edu/servers/hybridPBRpred/. Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Vol 35 (14) ◽  
pp. i343-i353 ◽  
Author(s):  
Jian Zhang ◽  
Lukasz Kurgan

AbstractMotivationAccurate predictions of protein-binding residues (PBRs) enhances understanding of molecular-level rules governing protein–protein interactions, helps protein–protein docking and facilitates annotation of protein functions. Recent studies show that current sequence-based predictors of PBRs severely cross-predict residues that interact with other types of protein partners (e.g. RNA and DNA) as PBRs. Moreover, these methods are relatively slow, prohibiting genome-scale use.ResultsWe propose a novel, accurate and fast sequence-based predictor of PBRs that minimizes the cross-predictions. Our SCRIBER (SeleCtive pRoteIn-Binding rEsidue pRedictor) method takes advantage of three innovations: comprehensive dataset that covers multiple types of binding residues, novel types of inputs that are relevant to the prediction of PBRs, and an architecture that is tailored to reduce the cross-predictions. The dataset includes complete protein chains and offers improved coverage of binding annotations that are transferred from multiple protein–protein complexes. We utilize innovative two-layer architecture where the first layer generates a prediction of protein-binding, RNA-binding, DNA-binding and small ligand-binding residues. The second layer re-predicts PBRs by reducing overlap between PBRs and the other types of binding residues produced in the first layer. Empirical tests on an independent test dataset reveal that SCRIBER significantly outperforms current predictors and that all three innovations contribute to its high predictive performance. SCRIBER reduces cross-predictions by between 41% and 69% and our conservative estimates show that it is at least 3 times faster. We provide putative PBRs produced by SCRIBER for the entire human proteome and use these results to hypothesize that about 14% of currently known human protein domains bind proteins.Availability and implementationSCRIBER webserver is available at http://biomine.cs.vcu.edu/servers/SCRIBER/.Supplementary informationSupplementary data are available at Bioinformatics online.


Author(s):  
Arthur Ecoffet ◽  
Frédéric Poitevin ◽  
Khanh Dao Duc

Abstract Motivation Cryogenic electron microscopy (cryo-EM) offers the unique potential to capture conformational heterogeneity, by solving multiple three-dimensional classes that co-exist within a single cryo-EM image dataset. To investigate the extent and implications of such heterogeneity, we propose to use an optimal-transport-based metric to interpolate barycenters between EM maps and produce morphing trajectories. Results While standard linear interpolation mostly fails to produce realistic transitions, our method yields continuous trajectories that displace densities to morph one map into the other, instead of blending them. Availability and implementation Our method is implemented as a plug-in for ChimeraX called MorphOT, which allows the use of both CPU or GPU resources. The code is publicly available on GitHub (https://github.com/kdd-ubc/MorphOT.git), with documentation containing tutorial and datasets. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Carlos Pintado ◽  
Jaime Santos ◽  
Valentín Iglesias ◽  
Salvador Ventura

Abstract Summary Polypeptides are exposed to changing environmental conditions that modulate their intrinsic aggregation propensities. Intrinsically disordered proteins (IDPs) constitutively expose their aggregation determinants to the solvent, thus being especially sensitive to its fluctuations. However, solvent conditions are often disregarded in computational aggregation predictors. We recently developed a phenomenological model to predict IDPs' solubility as a function of the solution pH, which is based on the assumption that both protein lipophilicity and charge depend on this parameter. The model anticipated solubility changes in different IDPs accurately. In this application note, we present SolupHred, a web-based interface that implements the aforementioned theoretical framework into a predictive tool able to compute IDPs aggregation propensities as a function of pH. SolupHred is the first dedicated software for the prediction of pH-dependent protein aggregation. Availability and implementation The SolupHred web server is freely available for academic users at: https://ppmclab.pythonanywhere.com/SolupHred. It is platform-independent and does not require previous registration. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Yuanyuan Han ◽  
Lan Huang ◽  
Fengfeng Zhou

Abstract Motivation A feature selection algorithm may select the subset of features with the best associations with the class labels. The recursive feature elimination (RFE) is a heuristic feature screening framework and has been widely used to select the biological OMIC biomarkers. This study proposed a dynamic recursive feature elimination (dRFE) framework with more flexible feature elimination operations. The proposed dRFE was comprehensively compared with 11 existing feature selection algorithms and five classifiers on the eight difficult transcriptome datasets from a previous study, the ten newly collected transcriptome datasets and the five methylome datasets. Results The experimental data suggested that the regular RFE framework did not perform well, and dRFE outperformed the existing feature selection algorithms in most cases. The dRFE-detected features achieved Acc = 1.0000 for the two methylome datasets GSE53045 and GSE66695. The best prediction accuracies of the dRFE-detected features were 0.9259, 0.9424 and 0.8601 for the other three methylome datasets GSE74845, GSE103186 and GSE80970, respectively. Four transcriptome datasets received Acc = 1.0000 using the dRFE-detected features, and the prediction accuracies for the other six newly collected transcriptome datasets were between 0.6301 and 0.9917. Availability and implementation The experiments in this study are implemented and tested using the programming language Python version 3.7.6. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i735-i744
Author(s):  
Fuhao Zhang ◽  
Wenbo Shi ◽  
Jian Zhang ◽  
Min Zeng ◽  
Min Li ◽  
...  

Abstract Motivation Knowledge of protein-binding residues (PBRs) improves our understanding of protein−protein interactions, contributes to the prediction of protein functions and facilitates protein−protein docking calculations. While many sequence-based predictors of PBRs were published, they offer modest levels of predictive performance and most of them cross-predict residues that interact with other partners. One unexplored option to improve the predictive quality is to design consensus predictors that combine results produced by multiple methods. Results We empirically investigate predictive performance of a representative set of nine predictors of PBRs. We report substantial differences in predictive quality when these methods are used to predict individual proteins, which contrast with the dataset-level benchmarks that are currently used to assess and compare these methods. Our analysis provides new insights for the cross-prediction concern, dissects complementarity between predictors and demonstrates that predictive performance of the top methods depends on unique characteristics of the input protein sequence. Using these insights, we developed PROBselect, first-of-its-kind consensus predictor of PBRs. Our design is based on the dynamic predictor selection at the protein level, where the selection relies on regression-based models that accurately estimate predictive performance of selected predictors directly from the sequence. Empirical assessment using a low-similarity test dataset shows that PROBselect provides significantly improved predictive quality when compared with the current predictors and conventional consensuses that combine residue-level predictions. Moreover, PROBselect informs the users about the expected predictive quality for the prediction generated from a given input protein. Availability and implementation PROBselect is available at http://bioinformatics.csu.edu.cn/PROBselect/home/index. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


2020 ◽  
Vol 36 (16) ◽  
pp. 4527-4529
Author(s):  
Ales Saska ◽  
David Tichy ◽  
Robert Moore ◽  
Achilles Rasquinha ◽  
Caner Akdas ◽  
...  

Abstract Summary Visualizing a network provides a concise and practical understanding of the information it represents. Open-source web-based libraries help accelerate the creation of biologically based networks and their use. ccNetViz is an open-source, high speed and lightweight JavaScript library for visualization of large and complex networks. It implements customization and analytical features for easy network interpretation. These features include edge and node animations, which illustrate the flow of information through a network as well as node statistics. Properties can be defined a priori or dynamically imported from models and simulations. ccNetViz is thus a network visualization library particularly suited for systems biology. Availability and implementation The ccNetViz library, demos and documentation are freely available at http://helikarlab.github.io/ccNetViz/. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Richard Jiang ◽  
Bruno Jacob ◽  
Matthew Geiger ◽  
Sean Matthew ◽  
Bryan Rumsey ◽  
...  

Abstract Summary We present StochSS Live!, a web-based service for modeling, simulation and analysis of a wide range of mathematical, biological and biochemical systems. Using an epidemiological model of COVID-19, we demonstrate the power of StochSS Live! to enable researchers to quickly develop a deterministic or a discrete stochastic model, infer its parameters and analyze the results. Availability and implementation StochSS Live! is freely available at https://live.stochss.org/ Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Pavel Beran ◽  
Dagmar Stehlíková ◽  
Stephen P Cohen ◽  
Vladislav Čurn

Abstract Summary Searching for amino acid or nucleic acid sequences unique to one organism may be challenging depending on size of the available datasets. K-mer elimination by cross-reference (KEC) allows users to quickly and easily find unique sequences by providing target and non-target sequences. Due to its speed, it can be used for datasets of genomic size and can be run on desktop or laptop computers with modest specifications. Availability and implementation KEC is freely available for non-commercial purposes. Source code and executable binary files compiled for Linux, Mac and Windows can be downloaded from https://github.com/berybox/KEC. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Matteo Chiara ◽  
Federico Zambelli ◽  
Marco Antonio Tangaro ◽  
Pietro Mandreoli ◽  
David S Horner ◽  
...  

Abstract Summary While over 200 000 genomic sequences are currently available through dedicated repositories, ad hoc methods for the functional annotation of SARS-CoV-2 genomes do not harness all currently available resources for the annotation of functionally relevant genomic sites. Here, we present CorGAT, a novel tool for the functional annotation of SARS-CoV-2 genomic variants. By comparisons with other state of the art methods we demonstrate that, by providing a more comprehensive and rich annotation, our method can facilitate the identification of evolutionary patterns in the genome of SARS-CoV-2. Availabilityand implementation Galaxy   http://corgat.cloud.ba.infn.it/galaxy; software: https://github.com/matteo14c/CorGAT/tree/Revision_V1; docker: https://hub.docker.com/r/laniakeacloud/galaxy_corgat. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document