scholarly journals VarGen: an R package for disease-associated variant discovery and annotation

2019 ◽  
Vol 36 (8) ◽  
pp. 2626-2627
Author(s):  
Corentin Molitor ◽  
Matt Brember ◽  
Fady Mohareb

Abstract Summary Over the past decade, there has been an exponential increase in the amount of disease-related genomic data available in public databases. However, this high-quality information is spread across independent sources and researchers often need to access these separately. Hence, there is a growing need for tools that gather and compile this information in an easy and automated manner. Here, we present ‘VarGen’, an easy-to-use, customizable R package that fetches, annotates and rank variants related to diseases and genetic disorders, using a collection public databases (viz. Online Mendelian Inheritance in Man, the Functional Annotation of the Mammalian genome 5, the Genotype-Tissue Expression and the Genome Wide Association Studies catalog). This package is also capable of annotating these variants to identify the most impactful ones. We expect that this tool will benefit the research of variant-disease relationships. Availability and implementation VarGen is open-source and freely available via GitHub: https://github.com/MCorentin/VarGen. The software is implemented as an R package and is supported on Linux, MacOS and Windows. Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Vol 36 (15) ◽  
pp. 4374-4376
Author(s):  
Ninon Mounier ◽  
Zoltán Kutalik

Abstract Summary Increasing sample size is not the only strategy to improve discovery in Genome Wide Association Studies (GWASs) and we propose here an approach that leverages published studies of related traits to improve inference. Our Bayesian GWAS method derives informative prior effects by leveraging GWASs of related risk factors and their causal effect estimates on the focal trait using multivariable Mendelian randomization. These prior effects are combined with the observed effects to yield Bayes Factors, posterior and direct effects. The approach not only increases power, but also has the potential to dissect direct and indirect biological mechanisms. Availability and implementation bGWAS package is freely available under a GPL-2 License, and can be accessed, alongside with user guides and tutorials, from https://github.com/n-mounier/bGWAS. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4724-4729 ◽  
Author(s):  
Wujuan Zhong ◽  
Cassandra N Spracklen ◽  
Karen L Mohlke ◽  
Xiaojing Zheng ◽  
Jason Fine ◽  
...  

Abstract Summary Tens of thousands of reproducibly identified GWAS (Genome-Wide Association Studies) variants, with the vast majority falling in non-coding regions resulting in no eventual protein products, call urgently for mechanistic interpretations. Although numerous methods exist, there are few, if any methods, for simultaneously testing the mediation effects of multiple correlated SNPs via some mediator (e.g. the expression of a gene in the neighborhood) on phenotypic outcome. We propose multi-SNP mediation intersection-union test (SMUT) to fill in this methodological gap. Our extensive simulations demonstrate the validity of SMUT as well as substantial, up to 92%, power gains over alternative methods. In addition, SMUT confirmed known mediators in a real dataset of Finns for plasma adiponectin level, which were missed by many alternative methods. We believe SMUT will become a useful tool to generate mechanistic hypotheses underlying GWAS variants, facilitating functional follow-up. Availability and implementation The R package SMUT is publicly available from CRAN at https://CRAN.R-project.org/package=SMUT. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Jacqueline Milet ◽  
Hervé Perdry

AbstractMotivationMixed linear models (MLM) have been widely used to account for population structure in case-control genome-wide association studies, the status being analyzed as a quantitative phenotype. Chen et al. proved that this method is inappropriate and proposed a score test for the mixed logistic regression (MLR). However this test does not allow an estimation of the variants’ effects.ResultsWe propose two computationally efficient methods to estimate the variants’ effects. Their properties are evaluated on two simulations sets, and compared with other methods (MLM, logistic regression). MLR performs the best in all circumstances. The variants’ effects are well evaluated by our methods, with a moderate bias when the effect sizes are large. Additionally, we propose a stratified QQ-plot, enhancing the diagnosis of p-values inflation or deflation, when population strata are not clearly identified in the sample.AvailabilityAll methods are implemented in the R package milorGWAS available at https://github.com/genostats/[email protected] informationSupplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (19) ◽  
pp. 3842-3845 ◽  
Author(s):  
Guangsheng Pei ◽  
Yulin Dai ◽  
Zhongming Zhao ◽  
Peilin Jia

Abstract Motivation Diseases and traits are under dynamic tissue-specific regulation. However, heterogeneous tissues are often collected in biomedical studies, which reduce the power in the identification of disease-associated variants and gene expression profiles. Results We present deTS, an R package, to conduct tissue-specific enrichment analysis with two built-in reference panels. Statistical methods are developed and implemented for detecting tissue-specific genes and for enrichment test of different forms of query data. Our applications using multi-trait genome-wide association studies data and cancer expression data showed that deTS could effectively identify the most relevant tissues for each query trait or sample, providing insights for future studies. Availability and implementation https://github.com/bsml320/deTS and CRAN https://cran.r-project.org/web/packages/deTS/ Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (9) ◽  
pp. 2763-2769
Author(s):  
Jie-Huei Wang ◽  
Yi-Hau Chen

Abstract Motivation In gene expression and genome-wide association studies, the identification of interaction effects is an important and challenging issue owing to its ultrahigh-dimensional nature. In particular, contaminated data and right-censored survival outcome make the associated feature screening even challenging. Results In this article, we propose an inverse probability-of-censoring weighted Kendall’s tau statistic to measure association of a survival trait with biomarkers, as well as a Kendall’s partial correlation statistic to measure the relationship of a survival trait with an interaction variable conditional on the main effects. The Kendall’s partial correlation is then used to conduct interaction screening. Simulation studies under various scenarios are performed to compare the performance of our proposal with some commonly available methods. In the real data application, we utilize our proposed method to identify epistasis associated with the clinical survival outcomes of non-small-cell lung cancer, diffuse large B-cell lymphoma and lung adenocarcinoma patients. Both simulation and real data studies demonstrate that our method performs well and outperforms existing methods in identifying main and interaction biomarkers. Availability and implementation R-package ‘IPCWK’ is available to implement this method, together with a reference manual describing how to perform the ‘IPCWK’ package. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (15) ◽  
pp. 2680-2682 ◽  
Author(s):  
Felipe Llinares-López ◽  
Laetitia Papaxanthos ◽  
Damian Roqueiro ◽  
Dean Bodenham ◽  
Karsten Borgwardt

Abstract Summary Combinatorial association mapping aims to assess the statistical association of higher-order interactions of genetic markers with a phenotype of interest. This article presents combinatorial association mapping (CASMAP), a software package that leverages recent advances in significant pattern mining to overcome the statistical and computational challenges that have hindered combinatorial association mapping. CASMAP can be used to perform region-based association studies and to detect higher-order epistatic interactions of genetic variants. Most importantly, unlike other existing significant pattern mining-based tools, CASMAP allows for the correction of categorical covariates such as age or gender, making it suitable for genome-wide association studies. Availability and implementation The R and Python packages can be downloaded from our GitHub repository http://github.com/BorgwardtLab/CASMAP. The R package is also available on CRAN. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jamie W. Robinson ◽  
Richard M. Martin ◽  
Spiridon Tsavachidis ◽  
Amy E. Howell ◽  
Caroline L. Relton ◽  
...  

AbstractGenome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk.


2018 ◽  
Vol 35 (14) ◽  
pp. 2512-2514 ◽  
Author(s):  
Bongsong Kim ◽  
Xinbin Dai ◽  
Wenchao Zhang ◽  
Zhaohong Zhuang ◽  
Darlene L Sanchez ◽  
...  

Abstract Summary We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. Availability and implementation GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthias Munz ◽  
Inken Wohlers ◽  
Eric Simon ◽  
Tobias Reinberger ◽  
Hauke Busch ◽  
...  

AbstractExploration of genetic variant-to-gene relationships by quantitative trait loci such as expression QTLs is a frequently used tool in genome-wide association studies. However, the wide range of public QTL databases and the lack of batch annotation features complicate a comprehensive annotation of GWAS results. In this work, we introduce the tool “Qtlizer” for annotating lists of variants in human with associated changes in gene expression and protein abundance using an integrated database of published QTLs. Features include incorporation of variants in linkage disequilibrium and reverse search by gene names. Analyzing the database for base pair distances between best significant eQTLs and their affected genes suggests that the commonly used cis-distance limit of 1,000,000 base pairs might be too restrictive, implicating a substantial amount of wrongly and yet undetected eQTLs. We also ranked genes with respect to the maximum number of tissue-specific eQTL studies in which a most significant eQTL signal was consistent. For the top 100 genes we observed the strongest enrichment with housekeeping genes (P = 2 × 10–6) and with the 10% highest expressed genes (P = 0.005) after grouping eQTLs by r2 > 0.95, underlining the relevance of LD information in eQTL analyses. Qtlizer can be accessed via https://genehopper.de/qtlizer or by using the respective Bioconductor R-package (https://doi.org/10.18129/B9.bioc.Qtlizer).


Author(s):  
Andrea Poretti ◽  
Michael V. Johnston

A variety of monogenic and polygenic genetic disorders have been linked to stroke, making it important for the clinician to keep up with the new discoveries and the potential to provide new gene-based therapies. Hematologic disorders such as sickle cell disease and thrombophilia due to mutations in prothrombin, factor V Leiden, and homocysteine metabolism are fairly well known, but mutations in mitochondrial metabolism and matrix metalloproteinases are less recognized. In addition, results of genome-wide association studies (GWAS) in stroke populations are revealing mutations that could predispose to stroke in specific ethnic populations. These studies are also revealing some crossover in mutations between stroke and familial hemiplegic migraine as well as mutations in growth factors such as brain derived neurotrophic factor (BDNF) that appear to influence the recovery from stroke by altering cortical plasticity.


Sign in / Sign up

Export Citation Format

Share Document