scholarly journals Into-India or out-of-India? Historical biogeography of the freshwater gastropod genus Pila (Caenogastropoda: Ampullariidae)

2020 ◽  
Vol 129 (3) ◽  
pp. 752-764 ◽  
Author(s):  
Maitreya Sil ◽  
N A Aravind ◽  
K Praveen Karanth

Abstract The biota of the Indian subcontinent was assembled through multiple associations with various landmasses during a period spanning the Late Cretaceous to the present. It consists of Gondwanan elements that subsequently dispersed ‘out-of-India’ and biota that dispersed ‘into-India’ after the subcontinent collided with Asia. However, the relative contribution of these connections to the current biotic assembly of the subcontinent has been under-explored. Our aim here was to understand the relative importance of these various routes of biotic assembly in India by studying the historical biogeography of the tropical Old World freshwater snail genus Pila. We reconstructed a near-complete phylogeny, based on nuclear and mitochondrial markers, of Ampullariidae including all the described Pila species from India and Ampullariids worldwide. Thereafter, molecular dating and ancestral range estimation analyses were carried out to ascertain the time frame and route of colonization of India by Pila. The results showed that Pila dispersed into India as well as other parts of tropical Asia from Africa after both India and Africa collided with Eurasia. Furthermore, multiple dispersals took place between Southeast Asia and India. These findings corroborate increasing evidence that much of the current Indian assemblage of biota actually dispersed ‘into-India’ after it collided with Asia.

2019 ◽  
Author(s):  
Maitreya Sil ◽  
N. A. Aravind ◽  
K. Praveen Karanth

AbstractThe biota of the Indian subcontinent has assembled during various points of the history of its continental drift: some when it was still a part of Gondwanaland and subsequently dispersed ‘out-of-India’ and some dispersed ‘into-India’ after it collided with Asia. However, the relative contribution of these connection to the current biotic assembly of the subcontinent is still under-explored. We aimed to understand the relative importance of these various routes of biotic assembly in India through studying the historical biogeography of tropical Old World freshwater snail genus Pila. We reconstructed a near-complete phylogeny of Ampullariidae including all the described Pila species from India and published sequences of Ampullariids from all over the world from two mitochondrial and two nuclear markers. Thereafter molecular dating and ancestral area reconstruction analyses were carried out in order to ascertain the time frame and route of colonization of India. The results suggest that Pila dispersed into India as well as other parts of tropical Asia from Africa after both India and Africa collided with Eurasia. Furthermore, multiple dispersals have taken place between Southeast Asia and India. The findings consolidate the rapidly building evidence that much of the current assemblage of biota actually dispersed into-India after it collided with Asia.


2018 ◽  
Author(s):  
Maitreya Sil ◽  
N. A. Aravind ◽  
K. Praveen Karanth

AbstractThe Indian subcontinent has experienced numerous paleogeological and paleoclimatic events during the Cenozoic which shaped the biotic assembly over time in the subcontinent. The role of these events in governing the biotic exchange between Southeast Asia and Indian subregion is underexplored. We aimed to uncover the effects the collision of the Indian and Asian plate, marine transgression in the Bengal basin as well as the paleoclimatic changes in the subcontinent and adjoining regions, on the dispersal of freshwater snail family Viviparidae from Southeast Asia (SEA) to Indian subregion. Extensive sampling was carried out throughout the Indian subcontinent to capture the current diversity of the targeted lineages. Three mitochondrial and two nuclear markers were sequenced from these samples and combined with published sequences to reconstruct a near complete global phylogeny of Viviparidae. Molecular dating and ancestral range estimation were undertaken to obtain the time frame for the dispersal events. Results from these analyses were contrasted with paleoclimate and paleogeology to better understand the biogeography of Indian viviparids. Results support at least two dispersal events into India from Southeast Asia. The earlier event is likely to have occurred during a warm and humid Eocene period before a permanent land connection was established between the two landmasses. While the more recent dispersal occurred post-suturing and overlapped with a time in late Tertiary to Quaternary when arid climate prevailed. However, we could not firmly establish how the marine transgressions influenced the dispersal events. Even though most biotic exchange between India and SEA are noted to be post-suturing, our results add to a growing body of work that suggests faunal exchange pre-suturing probably mediated by intermittent land connections.


2005 ◽  
Vol 62 (7) ◽  
pp. 2118-2135 ◽  
Author(s):  
Vlado Spiridonov ◽  
Mladjen Curic

Abstract The relative importance of various processes to sulfate production and wet deposition is examined by using a cloud-resolving model coupled with a sulfate chemistry submodel. Results using different versions of the model are then compared and principal differences with respect to their dynamics, microphysics, and chemistry are carefully discussed. The results imply that the dominant microphysical and chemical conversions of sulfate in the 3D run are nucleation, scavenging, and oxidation. Due to the lower cloud water and rainwater pH, oxidation does not contribute as significantly to the sulfate mass in the 2D run as the 3D. Sensitivity tests have revealed that in-cloud scavenging in the 2D run for continental nonpolluted and continental polluted clouds accounted for 29.4% and 31.5% of the total sulfur deposited, respectively. The 3D run shows a lower percentage contribution to sulfur deposition for about 28.2% and 29.6%. In addition, subcloud scavenging for the 2D run contributed about 32.7% and 38.2%. In-cloud oxidation in the 2D run accounted for about 24.5% to 30.4% of the total sulfur mass deposited. Subcloud oxidation contributed from 21.0% to 20.6% of the total sulfur mass removed by wet deposition. In-cloud oxidation for the 3D run shows slightly lower percentage values when compared to those from the 2D run. The relative contribution of subcloud oxidation for continental nonpolluted and polluted clouds exceeds those values in the 2D run by approximately 7% and 10%, respectively. Ignoring the ice phase and considering those types of convective clouds in the 2D run may lead to a higher value of the total sulfur mass removed by the wet deposition of about 33.9% to 39.2% for the continental nonpolluted and 36.2% to 45.6% for the continental polluted distributions relative to the base runs.


2008 ◽  
Vol 29 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Carissa Jones ◽  
Isaac Rojas-González ◽  
Julio Lemos-Espinal ◽  
Jaime Zúñiga-Vega

Abstract There appears to be variation in life-history strategies even between populations of the same species. For ectothermic organisms such as lizards, it has been predicted that demographic and life-history traits should differ consistently between temperate and tropical populations. This study compares the demographic strategies of a temperate and a tropical population of the lizard Xenosaurus platyceps. Population growth rates in both types of environments indicated populations in numerical equilibrium. Of the two populations, we found that the temperate population experiences lower adult mortality. The relative importance (estimated as the relative contribution to population growth rate) of permanence and of the adult/reproductive size classes is higher in the temperate population. In contrast, the relative importance for average fitness of fecundity and growth is higher in the tropical population. These results are consistent with the theoretical frameworks about life-historical differences among tropical and temperate lizard populations.


2021 ◽  
pp. 1-8
Author(s):  
Tingting Yu ◽  
Thomas A. Neubauer ◽  
Adrienne Jochum

Abstract Burmese amber continues to provide unique insights into the terrestrial biota inhabiting tropical equatorial forests during mid-Cretaceous time. In contrast to the large amount and great diversity of terrestrial species retrieved so far, aquatic biota constitute rare inclusions. Here we describe the first freshwater snail ever preserved in amber. The new species Galba prima sp. nov. belongs in the family Lymnaeidae, today a diverse and near globally distributed family. Its inclusion in terrestrial amber is probably a result of the amphibious lifestyle typical of modern representatives of the genus. The finding of a freshwater snail on the Burma Terrane, back then an island situated at some 1500 km from mainland Asia, has implications for the dispersal mechanisms of Mesozoic lymnaeids. The Cenomanian species precedes the evolution of waterfowl, which are today considered a main vector for long-distance dispersal. In their absence, we discuss several hypotheses to explain the disjunct occurrence of the new species.


Botany ◽  
2021 ◽  
Author(s):  
Mahboubeh Sherafati ◽  
Shahrokh Kazempour-Osaloo ◽  
Maryam Khoshsokhan-Mozaffar ◽  
Shokouh Esmailbegi ◽  
Yannick M. Staedler ◽  
...  

The Irano-Turanian (I-T) bioregion harbours one of the Old world’s greatest repositories of botanical diversity; however, the diversification patterns and the phenotypic evolution of its flora are sorely understudied. The subtribe Cynoglossinae is characteristic of the western I-T bioregion, species–rich both in the desertic lowlands and the more mesic highlands of the Iranian plateau. About 70 species of Cynoglossinae are present in the Iranian plateau, 47 of which are endemic to the plateau.Herein, nuclear ITS and cpDNA rpl32-trnL and trnH–psbA sequences were used to investigate the molecular phylogeny, historical biogeography and ancestral character states of Cynoglossinae. Molecular dating and ancestral range reconstruction analyses indicated that the subtribe Cynoglossinae has initiated its diversification from the eastern part of the western I-T during the mid-Miocene, concomitantly with the uplift of the Pamir and Hindu Kush mountains. Moreover, from the Pliocene onwards the Afghan-India collision and extensive deformation of the Arabia-Eurasia convergence probably promoted allopatric speciation in Cynoglossinae via mostly vicariance events. Evolution of annuals with small nutlets from perennials with large nutlets was accompanied by mesic to desert habitats shifts. Herein, to explain distribution of Cynoglossinae in the western I-T, the congruence between cladogenetic, geological and palaeoclimatic events was investigated.


Author(s):  
Gordon Campbell

The origins of the Islamic garden are a subject of considerable debate, focusing on the relative importance of two earlier traditions: ancient Rome and ancient Persia. Some argue that the linear axis and peristyle courtyard of the Roman garden is the only significant influence on the great Islamic gardens of Spain. Others champion the influence of ancient Persia, where the walled palace garden was a rectangle divided into quadrants by intersecting irrigation channels—a design known as chahar bagh (‘four gardens’). ‘The Islamic garden’ describes the Mughal gardens of the Indian subcontinent and moves westwards to the gardens of Spain and Portugal, explaining how Islamic gardens were (and are) centred on water.


Author(s):  
Glenn R. Lowry ◽  
Rodney L. Turner ◽  
Julie Fisher

This chapter presents a dynamic structural model of the relative contribution and importance of education and skills required of information systems (IS) professionals. Model development took into account the technical skills found in many tertiary IS programs, other business-oriented academic studies, and soft skills sought by employers in new graduates. The model also includes features of the working environment which influence the career progress of IS graduates. Acknowledging the importance of these four areas, the authors present a second-order structural model that links these areas and compares the application of this model to IS students and decision makers who employ graduates. The model fits the data for the two groups and exhibits some unexpected outcomes in the area of soft skills, with students attributing more importance to soft skills than IS managers. The model was employed to identify gender differences in perceptions of the relative contribution and importance of education and skills required of IS professionals. The model also includes features of the working environment which influence the career progress of IS graduates. The model was used to describe how attitudes and perceptions of IS professionals change across career stages as measured by age groupings. Changes in perceptions across four major age groupings show significant differences with respect to these factors according to age groups and by inference, career stage. The model allows, with some confidence, a quantitative interpretation of the relative importance of the respective variables from the perspectives of the student and employer stakeholder groups toward the education and professional development of IS professionals. The model also suggests the presence of contrasting, gender-based quantitative views of the relative importance of the respective variables to the education and professional development of IS professionals.


2019 ◽  
Vol 37 (2) ◽  
pp. 442-454 ◽  
Author(s):  
Diego Forni ◽  
Rachele Cagliani ◽  
Mario Clerici ◽  
Uberto Pozzoli ◽  
Manuela Sironi

Abstract JC polyomavirus (JCPyV) is one of the most prevalent human viruses. Findings based on the geographic distribution of viral subtypes suggested that JCPyV codiverged with human populations. This view was however challenged by data reporting a much more recent origin and expansion of JCPyV. We collected information on ∼1,100 worldwide strains and we show that their geographic distribution roughly corresponds to major human migratory routes. Bayesian phylogeographic analysis inferred a Subsaharan origin for JCPyV, although with low posterior probability. High confidence inference at internal nodes provided strong support for a long-standing association between the virus and human populations. In line with these data, pairwise FST values for JCPyV and human mtDNA sampled from the same areas showed a positive and significant correlation. Likewise, very strong relationships were found when node ages in the JCPyV phylogeny were correlated with human population genetic distances (nuclear-marker based FST). Reconciliation analysis detected a significant cophylogenetic signal for the human population and JCPyV trees. Notably, JCPyV also traced some relatively recent migration events such as the expansion of people from the Philippines/Taiwan area into Remote Oceania, the gene flow between North-Eastern Siberian and Ainus, and the Koryak contribution to Circum-Arctic Americans. Finally, different molecular dating approaches dated the origin of JCPyV in a time frame that precedes human out-of-Africa migration. Thus, JCPyV infected early human populations and accompanied our species during worldwide dispersal. JCPyV typing can provide reliable geographic information and the virus most likely adapted to the genetic background of human populations.


2019 ◽  
Vol 36 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Sarah Rosane M. C. Fadini ◽  
Reinaldo I. Barbosa ◽  
Rafael Rode ◽  
Viviane Corrêa ◽  
Rodrigo F. Fadini

AbstractMistletoes are considered keystone species on woodlands and savannas worldwide, providing a food resource for a diversified fauna, as well as a nutrient-enriched litter. Infections can be large (∼1–3 m) and, in some parts of the Amazonian savannas, parasitize up to 70% of hosts locally. Despite these facts, biomass of mistletoes is rarely investigated. Here we constructed allometric models to predict the biomass stock of the shrubby mistletoe Psittacanthus plagiophyllus in an Amazonian savanna. In addition, we determined whether host size could be used as a proxy for mistletoe biomass. Finally, we compared the biomass of mistletoes with that of trees, to evaluate their relative importance. We have shown that: (1) biomass of leaves (46.1% ± 13.5%) are as important as of stems (47.8% ± 13.5%), and relative contribution of stems increases as plant grows; (2) the model including width, breadth and vertical depth was the best (SE = 0.39, R2 = 0.9) for predicting individual mistletoe biomass; (3) mistletoe load and biomass per host had a positive, but weak (R2 = 0.11 and 0.09, respectively), relationship with host size, and thus such host information is a poor predictor of mistletoe biomass; and (4) in comparison with trees, mistletoes constituted less than 0.15% (0.5–22 kg ha−1) of the total above-ground biomass, suggesting that this life-form is irrelevant to the local biomass stock despite its unequivocal biological importance.


Sign in / Sign up

Export Citation Format

Share Document