Role of Peptidylarginine Deiminase 4 in Mammalian Preimplantation Embryonic Development.

2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 253-253
Author(s):  
Manjula Brahmajosyula ◽  
Teruhiko Wakayama ◽  
Masashi Miyake
Zygote ◽  
2012 ◽  
Vol 21 (4) ◽  
pp. 385-393
Author(s):  
Manjula Brahmajosyula ◽  
Masashi Miyake

SummaryArginine modification to citrulline (citrullination) is catalyzed by peptidylarginine deiminases (PADs) and one of the isomers PAD4 is shown to be involved in the gene regulation. In our previous paper we studied the localization and expression of PAD4 and the target of PAD4 in mammalian gametes and preimplantation embryos. In this study the role of PAD4 was examined in the pig diploid parthenogenetic preimplantation embryonic development. Knockdown of PAD4 by RNAi resulted in delayed development. Inhibition of PAD4 by a potent PAD4 inhibitor Cl-amidine from the time of activation for 24 h resulted in developmental arrest at the first cleavage. Inhibition at the later stages of development resulted in delayed or arrested development. A shorter exposure to Cl-amidine for 6 h at any stage of growth resulted in slow development. Thus, this study suggests that PAD4 activity is essential for the normal development of the embryos.


PLoS ONE ◽  
2011 ◽  
Vol 6 (6) ◽  
pp. e21314 ◽  
Author(s):  
Yi-Liang Liu ◽  
Yu-Hsiu Chiang ◽  
Guang-Yaw Liu ◽  
Hui-Chih Hung

2018 ◽  
Vol 201 (4) ◽  
pp. 1241-1252 ◽  
Author(s):  
Theodora A. M. Claushuis ◽  
Lieve E. H. van der Donk ◽  
Anna L. Luitse ◽  
Henk A. van Veen ◽  
Nicole N. van der Wel ◽  
...  

Tumor Biology ◽  
2015 ◽  
Vol 37 (4) ◽  
pp. 5375-5383 ◽  
Author(s):  
Ying-ying Cui ◽  
Li Yan ◽  
Jing Zhou ◽  
Shan Zhao ◽  
Ya-bing Zheng ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianping Guo ◽  
Lei Yin ◽  
Xuezhong Zhang ◽  
Peng Su ◽  
Qiaoli Zhai

Osteosarcoma is the most common type of bone malignancy, and the pathogenesis has not been entirely elucidated yet. An important deimination modification enzyme PADI4 (peptidylarginine deiminase 4) has attracted much attention in recent years for its important function in several kinds of human tumors. However, the role of PADI4 on osteosarcoma tumorigenesis remains largely unrevealed. Here, we first assessed the effect of PADI4 on osteosarcoma proliferation by the CCK8 method and colony formation assay. Ectopically expressing PADI4 positively regulates the colony formation capacity of both U2OS and Saos-2 cells. Furthermore, we explored the related mechanism and showed that PADI4 could stimulate Wnt/β-catenin and MEK/ERK signaling in both U2OS and Saos-2 cells. Then, we detected expression of PADI4 in human tissues of osteosarcoma and revealed that differential expression of PADI4 was associated with tumorigenesis of osteosarcoma. Last, we performed the in vivo experiment in nude mice and results also showed PADI4 could affect the tumor growth. In conclusion, this work revealed that PADI4 could upregulate the proliferation of osteosarcoma, mainly via the Wnt/β-catenin and MEK/ERK signaling pathway. This study gives us new insight into the regulation mechanism of osteosarcoma proliferation and highlights PADI4 as a promising target for osteosarcoma diagnosis and treatment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Abeer K. Shaalan ◽  
Tathyane H. N. Teshima ◽  
Abigail S. Tucker ◽  
Gordon B. Proctor

AbstractLittle is known about the key molecules that regulate cell division during organogenesis. Here we determine the role of the cell cycle promoter aurora kinase B (AURKB) during development, using embryonic salivary glands (E-SGs) as a model. AURKB is a serine/threonine kinase that regulates key events in mitosis, which makes it an attractive target for tailored anticancer therapy. Many reports have elaborated on the role of AURKB in neoplasia and cancer; however, no previous study has shown its role during organ development. Our previous experiments have highlighted the essential requirement for AURKB during adult exocrine regeneration. To investigate if AURKB is similarly required for progression during embryonic development, we pharmacologically inhibited AURKB in developing submandibular glands (SMGs) at embryonic day (E)13.5 and E16.5, using the highly potent and selective drug Barasertib. Inhibition of AURKB interfered with the expansion of the embryonic buds. Interestingly, this effect on SMG development was also seen when the mature explants (E16.5) were incubated for 24 h with another cell cycle inhibitor Aphidicolin. Barasertib prompted apoptosis, DNA damage and senescence, the markers of which (cleaved caspase 3, γH2AX, SA-βgal and p21, respectively), were predominantly seen in the developing buds. In addition to a reduction in cell cycling and proliferation of the epithelial cells in response to AURKB inhibition, Barasertib treatment led to an excessive generation of reactive oxygen species (ROS) that resulted in downregulation of the acinar differentiation marker Mist1. Importantly, inhibition of ROS was able to rescue this loss of identity, with Mist1 expression maintained despite loss of AURKB. Together, these data identify AURKB as a key molecule in supporting embryonic development and differentiation, while inhibiting senescence-inducing signals during organogenesis.


1960 ◽  
Vol 7 (1) ◽  
pp. 61-71 ◽  
Author(s):  
David A. Karnofsky ◽  
Ross S. Basch

The embryo of the sand-dollar (Echinarachnius parma) was exposed to various concentrations of fluorinated pyrimidines immediately after fertilization. FUDR (5-fluorodeoxyuridine) was most active, and a concentration of 2 to 4 mγ/10 cc. (0.8 to 1.6 x 10-6 m.eq./liter) blocked development at the early blastula stage. Larger doses interrupted development at the same stage. This effect was prevented by thymidine (TDR) and thymine (T); and these pyrimidines protected against many times the minimal lethal concentration of FUDR. TDR was active as a protective agent if added just before early blastula formation. The other fluorinated pyrimidines, 5-fluorouracil (FU), 5-fluorouridine (FUR), 5-fluorocytidine (FCR), 5-fluorodeoxycytidine (FCDR), and 5-fluoroorotic acid (FO), were also studied. These drugs produced effects on embryonic development similar to those seen with FUDR. The effective concentrations, however, varied greatly. T and TDR provided protection against these drugs, but in most cases they were not so effective as against FUDR. 5-Bromodeoxyurdine (BrUDR), beginning at the early blastula stage, caused a random pattern of embryonic death up to the pluteus stage. This drug has been shown to be incorporated into bacterial DNA. BrUDR protected embryos against the early lethal effects of FUDR presumably acting as a thymidine substitute, but the embryos died subsequently in a pattern similar to that seen with BrUDR alone. FUDR and BrUDR appear to inhibit the formation and alter the structure of DNA, respectively, distinctive effects whch may provide a means for studying the role of DNA in embryonic development.


Sign in / Sign up

Export Citation Format

Share Document