The role of gut dysbiosis in Parkinson's disease: mechanistic insights andtherapeutic options

Brain ◽  
2021 ◽  
Author(s):  
Qing Wang ◽  
Yuqi Luo ◽  
K Ray Chaudhuri ◽  
Richard Reynolds ◽  
Eng-King Tan ◽  
...  

Abstract Parkinson's disease is a common neurodegenerative disease in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alteration in gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the central nervous system, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries and alterations of the gut microbiota in Parkinson's disease, and highlight current mechanistic insights on the microbiota-gut-brain axis in disease pathophysiology. We discuss the interactions between production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we also draw attention to diet modification, use of probiotics and prebiotics and fecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 433
Author(s):  
Marina Lorente-Picón ◽  
Ariadna Laguna

Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, and for which no disease-modifying treatments exist. Neurodegeneration and neuropathology in different brain areas are manifested as both motor and non-motor symptoms in patients. Recent interest in the gut–brain axis has led to increasing research into the gut microbiota changes in PD patients and their impact on disease pathophysiology. As evidence is piling up on the effects of gut microbiota in disease development and progression, another front of action has opened up in relation to the potential usage of microbiota-based therapeutic strategies in treating gastrointestinal alterations and possibly also motor symptoms in PD. This review provides status on the different strategies that are in the front line (i.e., antibiotics; probiotics; prebiotics; synbiotics; dietary interventions; fecal microbiota transplantation, live biotherapeutic products), and discusses the opportunities and challenges the field of microbiome research in PD is facing.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiao-yi Kuai ◽  
Xiao-han Yao ◽  
Li-juan Xu ◽  
Yu-qing Zhou ◽  
Li-ping Zhang ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder and 70–80% of PD patients suffer from gastrointestinal dysfunction such as constipation. We aimed to assess the efficacy and safety of fecal microbiota transplantation (FMT) for treating PD related to gastrointestinal dysfunction. We conducted a prospective, single- study. Eleven patients with PD received FMT. Fecal samples were collected before and after FMT and subjected to 16S ribosomal DNA (rDNA) gene sequencing. Hoehn-Yahr (H-Y) grade, Unified Parkinson's Disease Rating Scale (UPDRS) score, and the Non-Motion Symptom Questionnaire (NMSS) were used to assess improvements in motor and non-motor symptoms. PAC-QOL score and Wexner constipation score were used to assess the patient's constipation symptoms. All patients were tested by the small intestine breath hydrogen test, performed before and after FMT. Community richness (chao) and microbial structure in before-FMT PD patients were significantly different from the after-FMT. We observed an increased abundance of Blautia and Prevotella in PD patients after FMT, while the abundance of Bacteroidetes decreased dramatically. After FMT, the H-Y grade, UPDRS, and NMSS of PD patients decreased significantly. Through the lactulose H2 breath test, the intestinal bacterial overgrowth (SIBO) in PD patients returned to normal. The PAC-QOL score and Wexner constipation score in after-FMT patients decreased significantly. Our study profiles specific characteristics and microbial dysbiosis in the gut of PD patients. FMT might be a therapeutic potential for reconstructing the gut microbiota of PD patients and improving their motor and non-motor symptoms.


2021 ◽  
Author(s):  
Xiao-yi Kuai ◽  
Xiao-han Yao ◽  
Li-Juan Xu ◽  
Yu-qing Zhou ◽  
Li-ping Zhang ◽  
...  

Abstract Parkinson’s disease (PD) is a neurodegenerative disorder and 70–80% of PD patients suffer from gastrointestinal dysfunction such as constipation. We aimed to assess the efficacy and safety of fecal microbiota transplantation (FMT) for treating PD related to gastrointestinal dysfunction. We conducted a prospective, single- study. Eleven patients with PD received FMT. Fecal samples were collected before and after FMT and subjected to 16S ribosomal DNA (rDNA) gene sequencing. Hoehn-Yahr (H-Y) grade, Unified Parkinson's Disease Rating Scale (UPDRS) score, and the Non-Motion Symptom Questionnaire (NMSS) were used to assess improvements in motor and non-motor symptoms. PAC-QOL score and Wexner constipation score were used to assess the patient's constipation symptoms. All patients were tested by the small intestine breath hydrogen test, performed before and after FMT. Community richness (chao) and microbial structure in before-FMT PD patients were significantly different from the after-FMT. We observed an increased abundance of Blautia and Prevotella in PD patients after FMT, while the abundance of Bacteroidetes decreased dramatically. After FMT, the H-Y grade, UPDRS, and NMSS of PD patients decreased significantly. Through the lactulose H2 breath test, the intestinal bacterial overgrowth (SIBO) in PD patients returned to normal. The PAC-QOL score and Wexner constipation score in after-FMT patients decreased significantly. Our study profiles specific characteristics and microbial dysbiosis in the gut of PD patients. FMT might be a therapeutic potential for reconstructing the gut microbiota of PD patients and improving their motor and non-motor symptoms.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


2021 ◽  
Vol 34 (4) ◽  
pp. 253-262
Author(s):  
Amy Gallop ◽  
James Weagley ◽  
Saif-ur-Rahman Paracha ◽  
George Grossberg

The gut microbiota is known to play a role in various disease states through inflammatory, immune and endocrinologic response. Parkinson’s Disease is of particular interest as gastrointestinal involvement is one of the earlier features seen in this disease. This paper examines the relationship between gut microbiota and Parkinson’s Disease, which has a growing body of literature. Inflammation caused by gut dysbiosis is thought to increase a-synuclein aggregation and worsen motor and neurologic symptoms of Parkinson’s disease. We discuss potential treatment and supplementation to modify the microbiota. Some of these treatments require further research before recommendations can be made, such as cord blood transplant, antibiotic use, immunomodulation and fecal microbiota transplant. Other interventions, such as increasing dietary fiber, polyphenol and fermented food intake, can be made with few risks and may have some benefit for symptom relief and speed of disease progression.


2019 ◽  
Vol 25 (3) ◽  
pp. 363-376 ◽  
Author(s):  
Sudhir K Dutta ◽  
Sandeep Verma ◽  
Vardhmaan Jain ◽  
Balarama K Surapaneni ◽  
Rakesh Vinayek ◽  
...  

NeuroSci ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Ikuko Miyazaki ◽  
Masato Asanuma

Parkinson’s disease (PD) is a complex, multi-system, neurodegenerative disorder; PD patients exhibit motor symptoms (such as akinesia/bradykinesia, tremor, rigidity, and postural instability) due to a loss of nigrostriatal dopaminergic neurons, and non-motor symptoms such as hyposmia, autonomic disturbance, depression, and REM sleep behavior disorder (RBD), which precedes motor symptoms. Pathologically, α-synuclein deposition is observed in the central and peripheral nervous system of sporadic PD patients. To clarify the mechanism of neurodegeneration in PD and to develop treatment to slow or stop PD progression, there is a great need for experimental models which reproduce neurological features of PD. Animal models exposed to rotenone, a commonly used pesticide, have received most attention since Greenamyre and his colleagues reported that chronic exposure to rotenone could reproduce the anatomical, neurochemical, behavioral, and neuropathological features of PD. In addition, recent studies demonstrated that rotenone induced neuropathological change not only in the central nervous system but also in the peripheral nervous system in animals. In this article, we review rotenone models especially focused on reproducibility of central and peripheral multiple features of PD. This review also highlights utility of rotenone models for investigation of PD pathogenesis and development of disease-modifying drugs for PD in future.


2018 ◽  
Vol 19 (11) ◽  
pp. 3573 ◽  
Author(s):  
Małgorzata Kujawska ◽  
Jadwiga Jodynis-Liebert

Parkinson’s disease (PD) is a neurodegenerative disorder resulting from degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). PD is characterized by motor dysfunctions as well as gastrointestinal symptoms and mental impairment. The pathological hallmark of PD is an accumulation of misfolded α-synuclein aggregates within the brain. The etiology of PD and related synucleinopathy is poorly understood, but recently, the hypothesis that α-synuclein pathology spreads in a prion-like fashion originating in the gut has gained much scientific attention. A crucial clue was the appearance of constipation before the onset of motor symptoms, gut dysbiosis and synucleinopathy in PD patients. Another line of evidence, demonstrating accumulation of α-synuclein within the peripheral autonomic nervous system (PANS), including the enteric nervous system (ENS), and the dorsal motor nucleus of the vagus (DMV) support the concept that α-synuclein can spread from the ENS to the brain by the vagus nerve. The decreased risk of PD following truncal vagotomy supports this. The convincing evidence of the prion-like behavior of α-synuclein came from postmortem observations that pathological α-synuclein inclusions appeared in healthy grafted neurons. In this review, we summarize the available data from human subjects’ research and animal experiments, which seem to be the most suggestive for explaining the hypotheses.


2016 ◽  
Vol 2016 ◽  
pp. 1-23 ◽  
Author(s):  
Andrée-Anne Poirier ◽  
Benoit Aubé ◽  
Mélissa Côté ◽  
Nicolas Morin ◽  
Thérèse Di Paolo ◽  
...  

A diagnosis of Parkinson’s disease is classically established after the manifestation of motor symptoms such as rigidity, bradykinesia, and tremor. However, a growing body of evidence supports the hypothesis that nonmotor symptoms, especially gastrointestinal dysfunctions, could be considered as early biomarkers since they are ubiquitously found among confirmed patients and occur much earlier than their motor manifestations. According to Braak’s hypothesis, the disease is postulated to originate in the intestine and then spread to the brain via the vagus nerve, a phenomenon that would involve other neuronal types than the well-established dopaminergic population. It has therefore been proposed that peripheral nondopaminergic impairments might precede the alteration of dopaminergic neurons in the central nervous system and, ultimately, the emergence of motor symptoms. Considering the growing interest in the gut-brain axis in Parkinson’s disease, this review aims at providing a comprehensive picture of the multiple gastrointestinal features of the disease, along with the therapeutic approaches used to reduce their burden. Moreover, we highlight the importance of gastrointestinal symptoms with respect to the patients’ responses towards medical treatments and discuss the various possible adverse interactions that can potentially occur, which are still poorly understood.


Sign in / Sign up

Export Citation Format

Share Document