scholarly journals Respiratory-related brain pulsations are increased in epilepsy—a two-centre functional MRI study

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Janne Kananen ◽  
Heta Helakari ◽  
Vesa Korhonen ◽  
Niko Huotari ◽  
Matti Järvelä ◽  
...  

Abstract Resting-state functional MRI has shown potential for detecting changes in cerebral blood oxygen level-dependent signal in patients with epilepsy, even in the absence of epileptiform activity. Furthermore, it has been suggested that coefficient of variation mapping of fast functional MRI signal may provide a powerful tool for the identification of intrinsic brain pulsations in neurological diseases such as dementia, stroke and epilepsy. In this study, we used fast functional MRI sequence (magnetic resonance encephalography) to acquire ten whole-brain images per second. We used the functional MRI data to compare physiological brain pulsations between healthy controls (n = 102) and patients with epilepsy (n = 33) and furthermore to drug-naive seizure patients (n = 9). Analyses were performed by calculating coefficient of variation and spectral power in full band and filtered sub-bands. Brain pulsations in the respiratory-related frequency sub-band (0.11–0.51 Hz) were significantly (P < 0.05) increased in patients with epilepsy, with an increase in both signal variance and power. At the individual level, over 80% of medicated and drug-naive seizure patients exhibited areas of abnormal brain signal power that correlated well with the known clinical diagnosis, while none of the controls showed signs of abnormality with the same threshold. The differences were most apparent in the basal brain structures, respiratory centres of brain stem, midbrain and temporal lobes. Notably, full-band, very low frequency (0.01–0.1 Hz) and cardiovascular (0.8–1.76 Hz) brain pulses showed no differences between groups. This study extends and confirms our previous results of abnormal fast functional MRI signal variance in epilepsy patients. Only respiratory-related brain pulsations were clearly increased with no changes in either physiological cardiorespiratory rates or head motion between the subjects. The regional alterations in brain pulsations suggest that mechanisms driving the cerebrospinal fluid homeostasis may be altered in epilepsy. Magnetic resonance encephalography has both increased sensitivity and high specificity for detecting the increased brain pulsations, particularly in times when other tools for locating epileptogenic areas remain inconclusive.

1999 ◽  
Vol 96 (6) ◽  
pp. 647-657 ◽  
Author(s):  
N. J. FULLER ◽  
C. R. HARDINGHAM ◽  
M. GRAVES ◽  
N. SCREATON ◽  
A. K. DIXON ◽  
...  

Magnetic resonance imaging (MRI) was used to evaluate and compare with anthropometry a fundamental bioelectrical impedance analysis (BIA) method for predicting muscle and adipose tissue composition in the lower limb. Healthy volunteers (eight men and eight women), aged 41 to 62 years, with mean (S.D.) body mass indices of 28.6 (5.4) kg/m2 and 25.1 (5.4) kg/m2 respectively, were subjected to MRI leg scans, from which 20-cm sections of thigh and 10-cm sections of lower leg (calf) were analysed for muscle and adipose tissue content, using specifically developed software. Muscle and adipose tissue were also predicted from anthropometric measurements of circumferences and skinfold thicknesses, and by use of fundamental BIA equations involving section impedance at 50 kHz and tissue-specific resistivities. Anthropometric assessments of circumferences, cross-sectional areas and volumes for total constituent tissues matched closely MRI estimates. Muscle volume was substantially overestimated (bias: thigh, -40%; calf, -18%) and adipose tissue underestimated (bias: thigh, 43%; calf, 8%) by anthropometry, in contrast to generally better predictions by the fundamental BIA approach for muscle (bias: thigh, -12%; calf, 5%) and adipose tissue (bias: thigh, 17%; calf, -28%). However, both methods demonstrated considerable individual variability (95% limits of agreement 20–77%). In general, there was similar reproducibility for anthropometric and fundamental BIA methods in the thigh (inter-observer residual coefficient of variation for muscle 3.5% versus 3.8%), but the latter was better in the calf (inter-observer residual coefficient of variation for muscle 8.2% versus 4.5%). This study suggests that the fundamental BIA method has advantages over anthropometry for measuring lower limb tissue composition in healthy individuals.


Tomography ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 10-21
Author(s):  
Brendan Lee Eck ◽  
Kecheng Liu ◽  
Wei-ching Lo ◽  
Yun Jiang ◽  
Vikas Gulani ◽  
...  

The purpose of this work is to evaluate the feasibility of performing magnetic resonance fingerprinting (MRF) on older and lower-performance MRI hardware as a means to bring advanced imaging to the aging MRI install base. Phantom and in vivo experiments were performed on a 1.5T Siemens Aera (installed 2015) and 1.5T Siemens Symphony (installed 2002). A 2D spiral MRF sequence for simultaneous T1/T2/M0 mapping was implemented on both scanners with different gradient trajectories to accommodate system specifications. In phantom, for T1/T2 values in a physiologically relevant range (T1: 195–1539 ms; T2: 20–267 ms), scanners had strong correlation (R2 > 0.999) with average absolute percent difference of 8.1% and 10.1%, respectively. Comparison of the two trajectories on the newer scanner showed differences of 2.6% (T1) and 10.9% (T2), suggesting a partial explanation of the observed inter-scanner bias. Inter-scanner agreement was better when the same trajectory was used, with differences of 6.0% (T1) and 4.0% (T2). Intra-scanner coefficient of variation (CV) of T1 and T2 estimates in phantom were <2.0% and in vivo were ≤3.5%. In vivo inter-scanner white matter CV was 4.8% (T1) and 5.1% (T2). White matter measurements on the aging scanner after two months were consistent, with differences of 1.9% (T1) and 3.9% (T2). In conclusion, MRF is feasible on an aging MRI scanner and required only changes to the gradient trajectory.


2018 ◽  
Vol 10 (1S) ◽  
pp. 51-55
Author(s):  
E. S. Solomatova ◽  
N. A. Shnaider ◽  
A. A. Molgachev ◽  
D. V. Dmitrenko ◽  
I. G. Strotskaya

The temporal lobe is the most epileptogenic region of the brain. 90% of patients with temporal ictal epileptomorphic EEG activity have a variable long history of seizures. Magnetic resonance spectroscopy  (MRS) may be useful in identifying an epileptogenic focus in patients  with epilepsy without apparent structural pathology at neuroimaging.Objective: to systematize the results of early studies on this issue.Materials and methods. An electronic search was carried out in two English-language (Medline, PubMed) and one Russian-language (eLIBRARY.RU) databases. The search queries found  18,019 citations, by which 12 full-text articles were selected.Results and discussion. The main criteria for the diagnosis of temporal lobe epilepsy by MRS is to lower the level of N-acetylaspartate (NAA), the ratio of NAA to creatinine + choline  (NAA/(Cr + Cho) in the brain region where there is neuronal death  or damage, as well as a change in the level of myo-inositol, the  elevated level of which indicates the presence of an epileptogenic  focus, while the decreased one shows the spread of pathological activity to the adjacent tissues.Conclusion. This review will contribute to a better diagnosis of temporal lobe epilepsy, as well as to the intravital noninvasive detection of metabolic changes in the brain long before the development of structural pathology.


Neurosurgery ◽  
2020 ◽  
Author(s):  
Benjamin Davidson ◽  
Fred Tam ◽  
Benson Yang ◽  
Ying Meng ◽  
Clement Hamani ◽  
...  

Abstract BACKGROUND Deep brain stimulation (DBS) is a standard of care treatment for multiple neurologic disorders. Although 3-tesla (3T) magnetic resonance imaging (MRI) has become the gold-standard modality for structural and functional imaging, most centers refrain from 3T imaging in patients with DBS devices in place because of safety concerns. 3T MRI could be used not only for structural imaging, but also for functional MRI to study the effects of DBS on neurocircuitry and optimize programming. OBJECTIVE To use an anthropomorphic phantom design to perform temperature and voltage safety testing on an activated DBS device during 3T imaging. METHODS An anthropomorphic 3D-printed human phantom was constructed and used to perform temperature and voltage testing on a DBS device during 3T MRI. Based on the phantom assessment, a cohort study was conducted in which 6 human patients underwent MRI with their DBS device in an activated (ON) state. RESULTS During the phantom study, temperature rises were under 2°C during all sequences, with the DBS in both the deactivated and activated states. Radiofrequency pulses from the MRI appeared to modulate the electrical discharge from the DBS, resulting in slight fluctuations of voltage amplitude. Six human subjects underwent MRI with their DBS in an activated state without any serious adverse events. One patient experienced stimulation-related side effects during T1-MPRAGE scanning with the DBS in an ON state because of radiofrequency-induced modulation of voltage amplitude. CONCLUSION Following careful phantom-based safety testing, 3T structural and functional MRI can be safely performed in subjects with activated deep brain stimulators.


2013 ◽  
Vol 26 (02) ◽  
pp. 100-104 ◽  
Author(s):  
M. C. Stewart ◽  
L. Ciobanu ◽  
P. D. Constable ◽  
J. F. Naughton

SummaryObjective: To assess the ability of a contrast-enhanced magnetic resonance imaging (MRI) technique to quantitatively determine glycosaminoglycan content in canine articular cartilage.Methods: Fifty-four full-thickness cartilage discs were collected from the femorotibial and scapulohumeral joints of three adult dogs immediately following euthanasia. One set of discs from each dog was analysed for glycosaminoglycan content using a colourimetric laboratory assay. The remaining position-matched set of discs from contralateral limbs underwent pre- and post-contrast gadolinium-enhanced MRI, using repeated saturation recovery pulse sequences which were used to generate calculated T1 maps of the cartilage discs. Linear regression analysis was then performed relating delayed gadolinium-enhanced MRI T1 calculated signal intensity to the cartilage glycosaminoglycan content normalized to DNA content. Repeatability of triplicate measurements was estimated by calculating the coefficient of variation.Results: Mean coefficient of variation estimates for the gadolinium-enhanced MRI T1 signal intensity values for nine sampling sites from three dogs ranged from 5.9% to 7.5%. Gadolinium-enhanced MRI T1 signal intensity was significantly correlated (p <0.05) with normalized glycosaminoglycan content in two dogs (r = 0.79, p = 0.011; r = 0.78, p = 0.048), but not in the third dog (r = 0.53, p = 0.071).Clinical significance: Gadolinium-enhanced MRI assessment of cartilage may be predictive of glycosaminoglycan content and therefore offer an in vivo assessment of changes in cartilage characteristics over time. Additional studies appear indicated to determine the reliability and clinical applicability of gadolinium-enhanced MRI in detecting changes in cartilage over time.


Sign in / Sign up

Export Citation Format

Share Document