scholarly journals Functional balance between Tcf21–Slug defines cellular plasticity and migratory modalities in high grade serous ovarian cancer cell lines

2019 ◽  
Vol 41 (4) ◽  
pp. 515-526 ◽  
Author(s):  
Sagar S Varankar ◽  
Madhuri More ◽  
Ancy Abraham ◽  
Kshama Pansare ◽  
Brijesh Kumar ◽  
...  

Abstract Cellular plasticity and transitional phenotypes add to complexities of cancer metastasis that can be initiated by single cell epithelial to mesenchymal transition (EMT) or cooperative cell migration (CCM). Our study identifies novel regulatory cross-talks between Tcf21 and Slug in mediating phenotypic and migration plasticity in high-grade serous ovarian adenocarcinoma (HGSC). Differential expression and subcellular localization associate Tcf21, Slug with epithelial, mesenchymal phenotypes, respectively; however, gene manipulation approaches identify their association with additional intermediate phenotypic states, implying the existence of a multistep epithelial-mesenchymal transition program. Live imaging further associated distinct migratory modalities with the Tcf21/Slug status of cell systems and discerned proliferative/passive CCM, active CCM and EMT modes of migration. Tcf21–Slug balance identified across a phenotypic spectrum in HGSC cell lines, associated with microenvironment-induced transitions and the emergence of an epithelial phenotype following drug exposure. Phenotypic transitions and associated functionalities following drug exposure were affirmed to ensue from occupancy of Slug promoter E-box sequences by Tcf21. Our study effectively provides a framework for understanding the relevance of ovarian cancer plasticity as a function of two transcription factors.

2018 ◽  
Author(s):  
Sagar S Varankar ◽  
Swapnil C Kamble ◽  
Avinash M Mali ◽  
Madhuri M More ◽  
Ancy Abraham ◽  
...  

AbstractCellular plasticity and transitional phenotypes add to complexities of cancer metastasis initiated by single cell epithelial to mesenchymal transition or cooperative cell migration (CCM). We identified novel regulatory cross-talks between Tcf21 and Slug in mediating phenotypic and migration plasticity in high-grade serous ovarian adenocarcinoma. Live imaging discerned CCM as being achieved either through rapid cell proliferation or sheet migration. Transitional states were enriched over the rigid epithelial or mesenchymal phenotypes under conditions of environmental stresses. The Tcf21-Slug interplay identified in HGSC tumors through effective stratification of subtypes also contributed to class-switching in response to disease progression or therapy. Our study effectively provides a framework for understanding the relevance of cellular plasticity in situ as a function of two transcription factors.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yangke Cai ◽  
Meng Zhang ◽  
Xiaofu Qiu ◽  
Bingwei Wang ◽  
Yu Fu ◽  
...  

Background and Objective. FBXW7, known as a general tumor suppressor, is commonly lowly expressed in metastatic malignancies. We aim to investigate the potential influence of FBXW7 overexpression on renal cell carcinoma (RCC) metastasis. Methods. We employed quantitative real-time PCR (qRT-PCR) and Western blotting (WB) to quantify the FBXW7 expression in RCC cell lines. Upregulation of FBXW7 was performed in vitro on RCC cells using the lentivirus covering coding region FBXW7 cDNA sequence, and functional tests were performed to verify FBXW7 overexpression on migration and invasion of RCC cells. Moreover, WB was employed to determine the expressions of MMP-2, MMP-9, and MMP-13, as well as EMT markers in the transfected RCC cells. Results. FBXW7 was significantly downregulated in RCC cell lines, dominated by 786-O and ACHN, when compared to normal renal cell line HK-2. Moreover, upregulation of FBXW7 in 786-O and ACHN cell lines significantly inhibited cell migration and invasion, as well as EMT. Present study also showed that FBXW7 was involved in the migration and invasion of RCC cells via regulating the expressions of MMP-2, MMP-9, and MMP-13. Conclusion. Our findings demonstrate that upregulation of FBXW7 inhibits RCC metastasis and EMT. FBXW7 is a potential therapeutic target for RCC patients.


2020 ◽  
pp. 1-23
Author(s):  
Divya Adiga ◽  
Raghu Radhakrishnan ◽  
Sanjiban Chakrabarty ◽  
Prashant Kumar ◽  
Shama Prasada Kabekkodu

Despite substantial advances in the field of cancer therapeutics, metastasis is a significant challenge for a favorable clinical outcome. Epithelial to mesenchymal transition (EMT) is a process of acquiring increased motility, invasiveness, and therapeutic resistance by cancer cells for their sustained growth and survival. A plethora of intrinsic mechanisms and extrinsic microenvironmental factors drive the process of cancer metastasis. Calcium (Ca<sup>2+</sup>) signaling plays a critical role in dictating the adaptive metastatic cell behavior comprising of cell migration, invasion, angiogenesis, and intravasation. By modulating EMT, Ca<sup>2+</sup> signaling can regulate the complexity and dynamics of events leading to metastasis. This review summarizes the role of Ca<sup>2+</sup> signal remodeling in the regulation of EMT and metastasis in cancer.


2021 ◽  
Author(s):  
Nina Xue ◽  
Tingting Du ◽  
Fangfang Lai ◽  
Jing Jin ◽  
Ming Ji ◽  
...  

Abstract Extracellular heat shock protein 90α (HSP90α) has been reported to promote cancer cell invasion and migration. However, whether pancreatic cancer (PC) cells expressed membrane-bound or secreted HSP90α and its underlying mechanism for PC progression were still unclear. Our study pointed out that highly invasive Capan2 cells has a higher level of secreted HSP90α, rather than membrane HSP90α, compared with those of less invasive PL45 cells. The conditioned medium of Capan2 cells or recombinant HSP90α protein was able to stimulate the migration and invasion of PL45 or capan2 cells, which could be prevented by a neutralizing anti-HSP90α antibody. Furthermore, secreted HSP90α promoted elements of epithelial-mesenchymal transition (EMT) in PL45 cells, including increases in vimentin and snail expressions, decreases in E-cadherin expression and changes in cell shape towards a mesenchymal phenotype, but these phenomena were reversed by anti-HSP90α antibody in Capan2 cells. In addition, high levels of low-density lipoprotein receptor-related protein 1 (LRP1) mRNA were associated with worsened patient survival in pancreatic adenocarcinoma. LRP1 as a receptor of eHSP90α for its stimulatory role of PC cells EMT and metastasis by activating AKT signaling. Down-regulation of LRP1 could promote chemosensitivity to gemcitabine and doxorubicin, but not to topotecan and paclitaxel in Capan2 cells. Therefore, our study reveals a critical role of secreted HSP90α on EMT events and suggests blocking secreted HSP90α underlies an aspect of metastasis and chemoresistance.


Author(s):  
Samriddhi Arora ◽  
Jyoti Tanwar ◽  
Nutan Sharma ◽  
Suman Saurav ◽  
Rajender K. Motiani

Pancreatic cancer (PC) is one of the most lethal forms of cancers with 5-year mean survival rate of less than 10%. Most of the PC associated deaths are due to metastasis to secondary sites. Calcium (Ca2+) signaling plays a critical role in regulating hallmarks of cancer progression including cell proliferation, migration and apoptotic resistance. Store operated Ca2+ entry (SOCE) mediated by Orai1/2/3 channels is a highly regulated and ubiquitous pathway responsible for Ca2+ influx into non-excitable cells. In this study, we performed extensive bioinformatic analysis of publicly available datasets and observed that Orai3 expression is inversely associated with the mean survival time of PC patients. Orai3 expression analysis in a battery of PC cell lines corroborated its differential expression profile. We then carried out thorough Ca2+ imaging experiments in 6 PC cell lines and found that Orai3 forms a functional SOCE in PC cells. Our in vitro functional assays show that Orai3 regulates PC cell cycle progression, apoptosis and migration. Most importantly, our in vivo xenograft studies demonstrate a critical role of Orai3 in PC tumor growth and secondary metastasis. Mechanistically, Orai3 controls G1 phase progression, matrix metalloproteinase expression and epithelial-mesenchymal transition in PC cells. Taken together, this study for the first time reports that Orai3 drives aggressive phenotypes of PC cells i.e. migration in vitro and metastasis in vivo. Considering that Orai3 expression is inversely associated with the PC patients survival time, it appears to be a highly attractive therapeutic target.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3725 ◽  
Author(s):  
Chen Chen ◽  
Shuang Huang ◽  
Chang-Liang Chen ◽  
Sing-Bing Su ◽  
Dong-Dong Fang

The epithelial-to-mesenchymal transition (EMT) plays a prominent role in cancer metastasis. Isoliquiritigenin (ISL), one of the flavonoids in licorice, has been shown to exhibit anticancer activities in many cancer types through various mechanisms. However, it is unknown whether ISL impacts the EMT process. Here, we show that ISL is able to suppress mesenchymal features of ovarian cancer SKOV3 and OVCAR5 cells, evidenced by an apparent morphological change from a mesenchymal to an epithelial phenotype and reduced levels of mesenchymal markers accompanied by the gain of E-cadherin expression. The suppression of EMT is also supported by the observed decrease in cell migration and in vitro invasion upon ISL treatment. Moreover, we show that ISL effectively blocks the intraperitoneal xenograft development of the SKOV3 cell line and prolonged the survival of tumor-bearing mice. These data suggest that ISL inhibits intraperitoneal ovary tumor development through the suppression of EMT, indicating that ISL may be an effective therapeutic agent against ovarian cancer.


2013 ◽  
Vol 6 (1) ◽  
pp. 49 ◽  
Author(s):  
Loukia N Lili ◽  
Lilya V Matyunina ◽  
L Walker ◽  
Stephen L Wells ◽  
Benedict B Benigno ◽  
...  

2019 ◽  
Vol 30 (19) ◽  
pp. 2527-2534 ◽  
Author(s):  
Linsen Shi ◽  
Zhaoying Wu ◽  
Ji Miao ◽  
Shangce Du ◽  
Shichao Ai ◽  
...  

The accumulation of adenosine in the tumor microenvironment is associated with tumor progression in many cancers. However, whether adenosine is involved in gastric cancer (GC) metastasis and progression, and the underlying molecular mechanism, is largely unclear. In this study, we find that GC tissues and cell lines had higher A2aR levels than nontumor gastric tissues and cell lines. A2aR expression correlated positively with TNMstage, and associated with poor outcomes. Adenosine enhanced the expression of the stemness and epithelial–mesenchymal transition-associated genes by binding to A2aR. A2aR expression on GC cells promoted metastasis in vivo. The PI3K-AKT-mTOR signaling pathway was involved in adenosine-stimulated GC cell migration and invasion. Our results indicate that adenosine promotes GC cell invasion and metastasis by interacting with A2aR to enhance PI3K–AKT–mTOR pathway signaling.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ana Luiza Drumond-Bock ◽  
Magdalena Bieniasz

AbstractHigh-grade serous ovarian carcinoma (HGSOC) is the most aggressive type of ovarian cancer, often diagnosed at advanced stages. Molecularly, HGSOC shows high degree of genomic instability associated with large number of genetic alterations. BRD4 is the 4th most amplified gene in HGSOC, which correlates with poor patients’ prognosis. BRD4 is constitutively expressed and generates two proteins, BRD4 long (BRD4-L) and BRD4 short (BRD4-S). Both isoforms contain bromodomains that bind to lysine-acetylated histones. Amongst other functions, BRD4 participates in chromatin organization, acetylation of histones, transcriptional control and DNA damage repair. In cancer patients with amplified BRD4, the increased activity of BRD4 is associated with higher expression of oncogenes, such as MYC, NOTCH3 and NRG1. BRD4-driven oncogenes promote increased tumor cells proliferation, genetic instability, epithelial-mesenchymal transition, metastasis and chemoresistance. Ablation of BRD4 activity can be successfully achieved with bromodomain inhibitors (BETi) and degraders, and it has been applied in pre-clinical and clinical settings. Inhibition of BRD4 function has an effective anti-cancer effect, reducing tumor growth whether ablated by single agents or in combination with other drugs. When combined with standard chemotherapy, BETi are capable of sensitizing highly resistant ovarian cancer cell lines to platinum drugs. Despite the evidence that BRD4 amplification in ovarian cancer contributes to poor patient prognosis, little is known about the specific mechanisms by which BRD4 drives tumor progression. In addition, newly emerging data revealed that BRD4 isoforms exhibit contradicting functions in cancer. Therefore, it is paramount to expand studies elucidating distinct roles of BRD4-L and BRD4-S in HGSOC, which has important implications on development of therapeutic approaches targeting BRD4.


Sign in / Sign up

Export Citation Format

Share Document