scholarly journals Increased Vitamin Content or an Imbalance in Methyl Nutrients in the Gestational Diet Shifts the Gut Microbiota of the Offspring in a Sex-Dependent Manner

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 787-787
Author(s):  
Ulrik N Mjaaseth ◽  
Jackson Norris ◽  
Niklas DJ Aardema ◽  
Madison L Bunnell ◽  
Korry Hintze ◽  
...  

Abstract Objectives Excess gestational folic acid and insufficient choline intakes as observed in the North American populations may increase the risk of obesity in offspring. It is well-established that adverse health outcomes may arise due to shifts in the gut microbial communities, but whether high vitamin intakes or an imbalance between methyl nutrients contributes to gut microbiota alterations is unclear. The objective of this research was to determine the gut microbiota composition of male and female offspring in relation to the vitamin composition of the gestational diet. Methods Pregnant Wistar rats (n = 10/group) were fed the AIN-93G diet with either the recommended vitamin (RV), high multivitamin (HV), high folic acid (HFol) or high folic acid without choline (HFol-C) content. Male and female offspring were weaned to a high-fat control diet for 12 weeks. Fecal samples were collected from the colon upon termination for gut microbiota profiling by 16S rRNA sequencing and data analyses in QIIME2. Results The overall gut microbial communities as assessed by unweighted UniFrac distances differed among the gestational diet groups for male (PERMANOVA P = 0.04) and female (PERMANOVA P = 0.05) offspring. The covariates gestational diet and sex predicted the gut microbiota differences in the offspring (Q2 = 0.07 in Songbird) whereas diet alone resulted in overfitting of the multinomial regression model (Q2 < 0). High ranked features from the natural log-ratios of microbial abundance were Shigella, Clostridiales, Clostridiaceae for HV, and Odoribacter, Akkermansia muciniphila, Blautia for both HFol and HFol-C compared to RV. Low ranked features were Odoribacter for HV, Clostridiaceae and Clostridiales for HFol, and Bifidobacterium, Allobaculum, Lactobacillus vaginalis for HFol-C compared to RV. In male offspring, Lactobacillus vaginalis, Sutterella and Clostridiales were high ranked and Odoribacter was low ranked compared to female offspring. These differentially abundant microbes may be important contributors to obesity across diet and sex. Conclusions Increased vitamin content or an imbalance between folic acid and choline in the gestational diet leads to a shift in the gut microbiota composition in the offspring toward obesity. These effects differed by sex. Funding Sources Utah Agricultural Experiment Station and USU Research Catalyst. UNM supported by USU URCO.

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4510
Author(s):  
Ulrik N. Mjaaseth ◽  
Jackson C. Norris ◽  
Niklas D. J. Aardema ◽  
Madison L. Bunnell ◽  
Robert E. Ward ◽  
...  

Excess vitamin intake during pregnancy leads to obesogenic phenotypes, and folic acid accounts for many of these effects in male, but not in female, offspring. These outcomes may be modulated by another methyl nutrient choline and attributed to the gut microbiota. Pregnant Wistar rats were fed an AIN-93G diet with recommended vitamin (RV), high 10-fold multivitamin (HV), high 10-fold folic acid with recommended choline (HFol) or high 10-fold folic acid without choline (HFol-C) content. Male and female offspring were weaned to a high-fat RV diet for 12 weeks post-weaning. Removing choline from the HFol gestational diet resulted in obesogenic phenotypes that resembled more closely to HV in male and female offspring with higher body weight, food intake, glucose response to a glucose load and body fat percentage with altered activity, concentrations of short-chain fatty acids and gut microbiota composition. Gestational diet and sex of the offspring predicted the gut microbiota differences. Differentially abundant microbes may be important contributors to obesogenic outcomes across diet and sex. In conclusion, a gestational diet high in vitamins or imbalanced folic acid and choline content contributes to the gut microbiota alterations consistent with the obesogenic phenotypes of in male and female offspring.


2021 ◽  
Vol 9 (5) ◽  
pp. 1037
Author(s):  
Craig Resch ◽  
Mihir Parikh ◽  
J. Alejandro Austria ◽  
Spencer D. Proctor ◽  
Thomas Netticadan ◽  
...  

There is an increased interest in the gut microbiota as it relates to health and obesity. The impact of diet and sex on the gut microbiota in conjunction with obesity also demands extensive systemic investigation. Thus, the influence of sex, diet, and flaxseed supplementation on the gut microbiota was examined in the JCR:LA-cp rat model of genetic obesity. Male and female obese rats were randomized into four groups (n = 8) to receive, for 12 weeks, either (a) control diet (Con), (b) control diet supplemented with 10% ground flaxseed (CFlax), (c) a high-fat, high sucrose (HFHS) diet, or (d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. Illumine MiSeq sequencing revealed a richer microbiota in rats fed control diets rather than HFHS diets. Obese female rats had lower alpha-diversity than lean female; however, both sexes of obese and lean JCR rats differed significantly in β-diversity, as their gut microbiota was composed of different abundances of bacterial types. The feeding of an HFHS diet affected the diversity by increasing the phylum Bacteroidetes and reducing bacterial species from phylum Firmicutes. Fecal short-chain fatty acids such as acetate, propionate, and butyrate-producing bacterial species were correspondingly impacted by the HFHS diet. Flax supplementation improved the gut microbiota by decreasing the abundance of Blautia and Eubacterium dolichum. Collectively, our data show that an HFHS diet results in gut microbiota dysbiosis in a sex-dependent manner. Flaxseed supplementation to the diet had a significant impact on gut microbiota diversity under both flax control and HFHS dietary conditions.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Sandi Wong ◽  
W. Zac Stephens ◽  
Adam R. Burns ◽  
Keaton Stagaman ◽  
Lawrence A. David ◽  
...  

ABSTRACT Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. IMPORTANCE The ability of gut microbiota to influence host health is determined in part by their composition. However, little is known about the relationship between gut and environmental microbiotas or about how ontogenetic differences in dietary fat impact gut microbiota composition. We addressed these gaps in knowledge using zebrafish, an ideal model organism because their environment can be thoroughly sampled and they can be fed the same diet for their entire lives. We found that microbial communities in the gut changed as zebrafish aged under conditions of a constant diet and became increasingly different from microbial communities in their surrounding environment. Further, we observed that the amount of fat in the diet had distinct age-specific effects on gut community assembly. These results reveal the complex relationships between microbial communities residing in the intestine and those in the surrounding environment and show that these relationships are shaped by dietary fat throughout the life of animal hosts.


2020 ◽  
Author(s):  
Yueqin Qiu ◽  
Kebiao Li ◽  
Shilong Liu ◽  
Li Wang ◽  
Kaiguo Gao ◽  
...  

Abstract Background: Choline or bile acids has many beneficial roles in physiological function. However, little was known about growth performance, intestinal mucosal function and microbiota-host interactions of weaned piglets in response to choline or bile acids supplementation. This study aimed to investigate the effect of choline and bile acids mixtures (ChB) supplementation on growth performance, intestinal mucosal barrier function, gut microbiota and bacterial metabolites of weaned piglets. One hundred and twenty-eight crossbred (Duroc × Landrace × Large White) weaned piglets (initial body weight: approximately 8 kg; 21 d of age) were randomly allocated to four different dietary treatments(a control diet (Control) and the other three groups were control diet supplemented with 800 mg/kg choline chloride (choline), 500 mg/kg bile acids (bile acids) or 800 mg/kg choline chloride plus 500 mg/kg bile acids (ChB), respectively) and for 28-d feeding trail. Results: ChB significantly increased average daily gain (ADG) and reduced feed/gain (F/G) ratio, associated with elevation of lipase activity and total bile acids level in ileal digesta compared with control diet. Additionally, ChB altered colonic microbiota by increasing the relative abundance of Lactobacillus and Faecalibacterium , and decreasing the relative abundances of unidentified-Clostridiales , Parabacteroides and Unidentified-Ruminococcaceae , when compared with control diet. Meanwhile, ChB increased the butyrate level and decreased the production of bile acid profiles in the colonic digesta. Besides, feeding ChB improved gut immunity, as reflected by increasing the abundance of IL-10 , FXR and mucin2 transcript, while downregulated expression of TLR4 , MyD88 , NF-κBp65 and TNF-α genes in the intestinal mucosa. Quantitative proteomics of jejunal mucosa further showed that ChB regulated the proteins that were related to inflammatory response. Furthermore, the changes in the ADG and genes expression were associated with alteration of gut microbiota composition and their metabolites. Conclusions: Collectively, our findings demonstrated that choline and bile acids mixture may improve the growth performance and intestinal immune response of weaned piglets through alteration of gut microbiota composition and bacterial metabolites, which promoted gut health.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2812
Author(s):  
Ryuta Ejima ◽  
Masahiro Akiyama ◽  
Hiroki Sato ◽  
Sawako Tomioka ◽  
Kyosuke Yakabe ◽  
...  

Metabolic syndrome (MetS) is a multifactorial chronic metabolic disorder that affects approximately one billion people worldwide. Recent studies have evaluated whether targeting the gut microbiota can prevent MetS. This study aimed to assess the ability of dietary fiber to control MetS by modulating gut microbiota composition. Sodium alginate (SA) is a seaweed-derived dietary fiber that suppresses high-fat diet (HFD)-induced MetS via an effect on the gut microbiota. We observed that SA supplementation significantly decreased body weight gain, cholesterol levels, and fat weight, while improving glucose tolerance in HFD-fed mice. SA changed the gut microbiota composition and significantly increased the abundance of Bacteroides. Antibiotic treatment completely abolished the suppressive effects of SA on MetS. Mechanistically, SA decreased the number of colonic inflammatory monocytes, which promote MetS development, in a gut microbiota-dependent manner. The abundance of Bacteroides was negatively correlated with that of inflammatory monocytes and positively correlated with the levels of several gut metabolites. The present study revealed a novel food function of SA in preventing HFD-induced MetS through its action on gut microbiota.


2020 ◽  
Vol 100 (7) ◽  
pp. 1181-1188
Author(s):  
Khaled F. A. Abdelrhman ◽  
Alice Ciofini ◽  
Giovanni Bacci ◽  
Cecilia Mancusi ◽  
Alessio Mengoni ◽  
...  

AbstractThe evaluation of symbiotic microbial communities occurring in the intestinal tract of animals has received great interest in recent years. However, little is known about gut microbial communities in cetaceans, despite their relevance in the ecology of marine communities. Here, we report an investigation using 16S rRNA gene amplicon sequencing of the resident gut microbiota of the two cetacean species Stenella coeruleoalba and Tursiops truncatus by sampling intestinal mucosa from specimens retrieved stranded along the Tyrrhenian coast of Tuscany (Italy). We found an abundance of members from Clostridiaceae and Fusobacteriaceae, which in total accounted for more than 50% of reads, in agreement with gut microbiota composition of other carnivorous mammals. Probably due to the limited number of samples available, sex, preservation status and also species, did not correlate with overall differences in the microbiota. Indeed, a high similarity of the taxonomic (family-level) composition between the gut microbiota of the two species was found. However, Pedobacter spp. was found abundant in amplicon sequencing libraries from S. coeruleoalba, while clostridia were more abundant from T. truncatus samples. Our results shed some light on the gut microbiota composition of two dolphin (S. coeruleoalba and T. truncatus) species, with specimens collected in the wild. Studies with a larger number of individuals are now needed to confirm these first results and evaluate the interspecific differences in relation to sex and age.


2021 ◽  
Vol 9 (3) ◽  
pp. 584
Author(s):  
Francesco Miragoli ◽  
Vania Patrone ◽  
Aldo Prandini ◽  
Samantha Sigolo ◽  
Matteo Dell’Anno ◽  
...  

Alternatives to antibiotic treatments are required owing to the ban on the use of these drugs as growth promoters in food animal production. Tributyrin appears to play a role in improving growth performance in pigs, albeit with varying degrees of effectiveness. So far, very little is known about its effects on gut microbiota composition. In this study, we investigated the gut microbiota changes of piglets receiving, at weaning, 0.2% tributyrin added to their basal diet. Microbiota composition was assessed through 16S-rRNA gene sequencing on stools collected from tributyrin and control groups. The functional profiles of microbial communities were predicted from amplicon abundance data. A comparison between dietary groups revealed that tributyrin strongly modulated gut microbiota composition in piglets, increasing the relative abundance of a number of bacterial genera such as Oscillospira, Oscillibacter, Mucispirillum and Butyrivibrio. These genera were positively correlated to animal average daily gain (ADG) and/or body weight (BW). Based on the function profile prediction, the gut microbiome of the tributyrin group possessed an enhanced potential for energy metabolism and a reduced potential for carbohydrate metabolism. In conclusion, our results indicated that tributyrin can promote changes to gut microbial communities, which could contribute to improving animal performance after weaning.


Sign in / Sign up

Export Citation Format

Share Document