Choline and Bile Acids Mixture Improved Growth Performance and Intestinal Immunity via Altering Gut Microbiota and Bacterial Metabolites in the Colon of Weaned Piglets.

2020 ◽  
Author(s):  
Yueqin Qiu ◽  
Kebiao Li ◽  
Shilong Liu ◽  
Li Wang ◽  
Kaiguo Gao ◽  
...  

Abstract Background: Choline or bile acids has many beneficial roles in physiological function. However, little was known about growth performance, intestinal mucosal function and microbiota-host interactions of weaned piglets in response to choline or bile acids supplementation. This study aimed to investigate the effect of choline and bile acids mixtures (ChB) supplementation on growth performance, intestinal mucosal barrier function, gut microbiota and bacterial metabolites of weaned piglets. One hundred and twenty-eight crossbred (Duroc × Landrace × Large White) weaned piglets (initial body weight: approximately 8 kg; 21 d of age) were randomly allocated to four different dietary treatments(a control diet (Control) and the other three groups were control diet supplemented with 800 mg/kg choline chloride (choline), 500 mg/kg bile acids (bile acids) or 800 mg/kg choline chloride plus 500 mg/kg bile acids (ChB), respectively) and for 28-d feeding trail. Results: ChB significantly increased average daily gain (ADG) and reduced feed/gain (F/G) ratio, associated with elevation of lipase activity and total bile acids level in ileal digesta compared with control diet. Additionally, ChB altered colonic microbiota by increasing the relative abundance of Lactobacillus and Faecalibacterium , and decreasing the relative abundances of unidentified-Clostridiales , Parabacteroides and Unidentified-Ruminococcaceae , when compared with control diet. Meanwhile, ChB increased the butyrate level and decreased the production of bile acid profiles in the colonic digesta. Besides, feeding ChB improved gut immunity, as reflected by increasing the abundance of IL-10 , FXR and mucin2 transcript, while downregulated expression of TLR4 , MyD88 , NF-κBp65 and TNF-α genes in the intestinal mucosa. Quantitative proteomics of jejunal mucosa further showed that ChB regulated the proteins that were related to inflammatory response. Furthermore, the changes in the ADG and genes expression were associated with alteration of gut microbiota composition and their metabolites. Conclusions: Collectively, our findings demonstrated that choline and bile acids mixture may improve the growth performance and intestinal immune response of weaned piglets through alteration of gut microbiota composition and bacterial metabolites, which promoted gut health.

2020 ◽  
Vol 151 (1) ◽  
pp. 20-29
Author(s):  
Yueqin Qiu ◽  
Shilong Liu ◽  
Lei Hou ◽  
Kebiao Li ◽  
Li Wang ◽  
...  

ABSTRACT Background Whether dietary choline and bile acids affect lipid use via gut microbiota is unclear. Objectives This study aimed to investigate the effect of choline and bile acids on growth performance, lipid use, intestinal immunology, gut microbiota, and bacterial metabolites in weaned piglets. Methods A total of 128 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 8.21 ± 0.20 kg body weight (BW)] were randomly allocated to 4 treatments (8 replicate pens per treatment, each pen containing 2 males and 2 females; n = 32 per treatment) for 28 d. Piglets were fed a control diet (CON) or the CON diet supplemented with 597 mg choline/kg (C), 500 mg bile acids/kg (BA) or both (C + BA) in a 2 × 2 factorial design. Growth performance, intestinal function, gut microbiota, and metabolites were determined. Results Compared with diets without choline, choline supplementation increased BW gain (6.13%), average daily gain (9.45%), gain per feed (8.18%), jejunal lipase activity (60.2%), and duodenal IL10 gene expression (51%), and decreased the mRNA abundance of duodenal TNFA (TNFα) (40.7%) and jejunal toll-like receptor 4 (32.9%) (P < 0.05); additionally, choline increased colonic butyrate (29.1%) and the abundance of Lactobacillus (42.3%), while decreasing the bile acid profile (55.8% to 57.6%) and the abundance of Parabacteroides (75.8%), Bacteroides (80.7%), and unidentified-Ruminococcaceae (32.5%) (P ≤ 0.05). Compared with diets without BA, BA supplementation decreased the mRNA abundance of colonic TNFA (37.4%), NF-κB p65 (42.4%), and myeloid differentiation factor 88 (42.5%) (P ≤ 0.01); BA also increased colonic butyrate (20.9%) and the abundance of Lactobacillus (39.7%) and Faecalibacterium (71.6%) and decreased that of Parabacteroides (67.7%) (P < 0.05). Conclusions Choline supplementation improved growth performance and prevented gut inflammation in weaned piglets by altering gut microbiota and lipid metabolism. BA supplementation suppressed intestinal inflammation with no effect on growth performance, which was associated with changed gut microbiota and metabolites.


2006 ◽  
Vol 86 (4) ◽  
pp. 511-522 ◽  
Author(s):  
H. Namkung ◽  
J. Gong ◽  
H. Yu ◽  
C. F. M. de Lange

The effect of feeding pharmacological levels of zinc (Zn) and copper (Cu) to newly weaned piglets on growth performance, circulating cytokines levels and gut microbiota was investigated. One hundred eighty piglets [5.90 ± 0.18 kg body weight (BW); six pigs per pen] weaned at 16 to 19 d of age were fed diets containing 3000 ppm additional Zn, 250 ppm additional Cu or a control diet (150 ppm Zn, 15 ppm Cu) for 14 d post-weaning (weeks 1 and 2). Pigs were fed a control diet for an additional 2 wk. Pigs were injected intramuscularly on days 13 and 19 with either 75 μg kg-1 BW of coliform lipopolysaccharide (LPS) or an equivalent amount of saline. Blood samples were collected 3 h after LPS injection to measure plasma levels of cytokines and cortisol. Digesta of ileum and colon were collected from non-challenged pigs on days 14 and 28 to evaluate microbiota using conventional culturing methods and polymerase chain reaction and denaturing gradient gel electrophoresis (PCRDGGE) analysis of the 16S rRNA genes. There were no interactive effects of diet and LPS challenge on growth performance (P > 0.10). Compared with the control, high dietary Zn and Cu increased (P < 0.01) average daily gain (ADG) during weeks 1 (0.125, 0.091 vs. 0.074 kg; P < 0.05) and 2 (0.240, 0.270 vs. 0.155 kg; P < 0.01) only. LPS injection reduced ADG during weeks 2 and 4 (P < 0.01). Dietary treatment did not affect feed efficiency (P > 0.10). Challenging pigs with LPS reduced (P < 0.01) feed efficiency during week 2, but increased (P < 0.05) feed efficiency during week 3. There were no interactive effects between diet and LPS on plasma cytokines levels, except for cortisol (P < 0.05). Plasma levels of cytokines (interleukin-1β, interferon-γ, tumour necrosis factor-α) and cortisol increased (P < 0.01) in pigs challenged with LPS. The high levels of dietary Zn and Cu reduced (P < 0.05) the increases in plasma cortisol level in LPS-challenged pigs at days 9 and 19. There were no differences among the dietary treatments in counts of coliforms and lactobacillus in the digesta from ileum and colon (P > 0.10). PCR-DGGE analysis showed that high levels of dietary Zn and particularly Cu significantly reduced the diversity of ileal microbiota. The effect on microbiota diversity was reversible when dietary Zn and Cu were removed. Enhanced growth performance of the newly weaned piglets fed high dietary Zn and Cu appears mediated via changes in gut microbiota as well as a reduced cortisol response following an immune challenge. Key words: Piglets, zinc, copper, lipopolysaccharide, gut microbiota, cytokines


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 787-787
Author(s):  
Ulrik N Mjaaseth ◽  
Jackson Norris ◽  
Niklas DJ Aardema ◽  
Madison L Bunnell ◽  
Korry Hintze ◽  
...  

Abstract Objectives Excess gestational folic acid and insufficient choline intakes as observed in the North American populations may increase the risk of obesity in offspring. It is well-established that adverse health outcomes may arise due to shifts in the gut microbial communities, but whether high vitamin intakes or an imbalance between methyl nutrients contributes to gut microbiota alterations is unclear. The objective of this research was to determine the gut microbiota composition of male and female offspring in relation to the vitamin composition of the gestational diet. Methods Pregnant Wistar rats (n = 10/group) were fed the AIN-93G diet with either the recommended vitamin (RV), high multivitamin (HV), high folic acid (HFol) or high folic acid without choline (HFol-C) content. Male and female offspring were weaned to a high-fat control diet for 12 weeks. Fecal samples were collected from the colon upon termination for gut microbiota profiling by 16S rRNA sequencing and data analyses in QIIME2. Results The overall gut microbial communities as assessed by unweighted UniFrac distances differed among the gestational diet groups for male (PERMANOVA P = 0.04) and female (PERMANOVA P = 0.05) offspring. The covariates gestational diet and sex predicted the gut microbiota differences in the offspring (Q2 = 0.07 in Songbird) whereas diet alone resulted in overfitting of the multinomial regression model (Q2 &lt; 0). High ranked features from the natural log-ratios of microbial abundance were Shigella, Clostridiales, Clostridiaceae for HV, and Odoribacter, Akkermansia muciniphila, Blautia for both HFol and HFol-C compared to RV. Low ranked features were Odoribacter for HV, Clostridiaceae and Clostridiales for HFol, and Bifidobacterium, Allobaculum, Lactobacillus vaginalis for HFol-C compared to RV. In male offspring, Lactobacillus vaginalis, Sutterella and Clostridiales were high ranked and Odoribacter was low ranked compared to female offspring. These differentially abundant microbes may be important contributors to obesity across diet and sex. Conclusions Increased vitamin content or an imbalance between folic acid and choline in the gestational diet leads to a shift in the gut microbiota composition in the offspring toward obesity. These effects differed by sex. Funding Sources Utah Agricultural Experiment Station and USU Research Catalyst. UNM supported by USU URCO.


2020 ◽  
Vol 16 (2) ◽  
pp. 277-285 ◽  
Author(s):  
O. M. Drapkina ◽  
A. N. Kaburova

Chronic noncommunicable diseases represent one of the key medical problems of the XXI century. In this group cardiovascular diseases (CVD) are known to be the leading cause of death which pathogenesis still has the potential to be more profoundly revealed in order to discover its yet unknown but essential factors. The last decades are marked by the active investigation into the gut bacterial role in the initiation and progression of CVD. The result of this investigation has been the appreciation of microbiome as the potentially new cardiovascular risk factor. The development of sequencing techniques, together with bioinformatics analysis allowed the scientists to intensively broaden the understanding of the gut microbiota composition and functions of its metabolites in maintaining the health and the development of atherosclerosis, arterial hypertension and heart failure. The interaction between macro- and microorganisms is mediated through the variety of pathways, among which the key players are thought to be trimethylamine-N-oxide (TMAO), short chain fatty acids (SCFA) and secondary bile acids. TMAO is known due to its role in atherosclerosis development and the increase in major cardiovascular events. In the majority of research SCFA and secondary bile acids have demonstrated protective role in CVD. The great attention is being paid to the role of lipopolysaccharide of gram negative bacteria in the development of systemic low-grade inflammation due to the metabolic endotoxemia which contributes to the progression of CVD. The described interactions draw attention to the opportunity to influence on the certain mechanisms of CVD pathogenesis through the modulation of microbiota composition and function. The review is aimed at highlighting the current data about the mechanisms by which the gut microbiota and its metabolites may increase cardiovascular risk and events rate as well as discussing the existing results and future perspective of bacterial systemic effects modulation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yongdi Zeng ◽  
Zirui Wang ◽  
Tiande Zou ◽  
Jun Chen ◽  
Guanhong Li ◽  
...  

This study aimed to investigate the effects of dietary bacteriophage supplementation on growth performance, intestinal morphology, barrier function, and intestinal microbiota of weaned piglets fed antibiotic-free diet. A total of 120 weaned piglets were allotted to four dietary treatments with five pens/treatment and six piglets/pen in a 21-d feeding trial. The control diet was supplemented with 25 mg/kg quinocetone and 11.25 mg/kg aureomycin in the basal diet, while the three treatment diets were supplemented with 200, 400, or 600 mg/kg bacteriophage in the basal diet, respectively. There was no difference for growth performance and all measured indices of serum and intestinal tissues between 200 mg/kg bacteriophage group and the control group with antibiotics (P &gt; 0.05). More importantly, compared with the control diet, dietary 400 mg/kg bacteriophage inclusion increased average daily gain and average daily feed intake, and decreased feed/gain ratio and diarrhea incidence of weaned piglets (P &lt; 0.05). Also, piglets fed 400 mg/kg bacteriophage had elevated villi height (VH) in jejunum and ileum, reduced crypt depth (CD) in jejunum and ileum, and elevated VH/CD ratio in duodenum, jejunum and ileum (P &lt; 0.05). Compared to the control group, piglets fed 400 mg/kg bacteriophage had lower interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and higher interleukin-10 (IL-10) concentration in serum, and higher secretory immunoglobulin A (sIgA), intestinal trefoil factor (ITF), and tumor growth factor-alpha (TGF-α) content in the ileal mucosa (P &lt; 0.05). Besides, dietary addition with 400 mg/kg bacteriophage decreased the D-lactate concentration and diamine oxidase (DAO) activity in serum, and increased the relative mRNA expression of ZO-1, Claudin-1, Occludin, TLR2, TLR4, and TLR9, as well as the relative protein expression of Occludin in the jejunum (P &lt; 0.05). However, the growth performance and all analyzed parameters in serum and intestinal tissues were not further improved when piglets fed 600 vs. 400 mg/kg bacteriophage (P &gt; 0.05). MiSeq sequencing analysis showed that bacteriophage regulated the microbial composition in caecum digesta, as indicated by higher observed_species, Chao1, and ACE richness indices, as well as changes in the relative abundance of Firmicutes, Bacteroidetes, and Tenericutes (P &lt; 0.05). Collectively, 400 mg/kg bacteriophage can be used as an antibiotics alternative for promoting the growth of weaned piglets. The underlying mechanism is associated with a positive effect of bacteriophage on intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets.


2021 ◽  
pp. 1-17
Author(s):  
Agata Mulak

Recently, the concept of the brain-gut-microbiota (BGM) axis disturbances in the pathogenesis of Alzheimer’s disease (AD) has been receiving growing attention. At the same time, accumulating data revealing complex interplay between bile acids (BAs), gut microbiota, and host metabolism have shed new light on a potential impact of BAs on the BGM axis. The crosstalk between BAs and gut microbiota is based on reciprocal interactions since microbiota determines BA metabolism, while BAs affect gut microbiota composition. Secondary BAs as microbe-derived neuroactive molecules may affect each of three main routes through which interactions within the BGM axis occur including neural, immune, and neuroendocrine pathways. BAs participate in the regulation of multiple gut-derived molecule release since their receptors are expressed on various cells. The presence of BAs and their receptors in the brain implies a direct effect of BAs on the regulation of neurological functions. Experimental and clinical data confirm that disturbances in BA signaling are present in the course of AD. Disturbed ratio of primary to secondary BAs as well as alterations in BA concertation in serum and brain samples have been reported. An age-related shift in the gut microbiota composition associated with its decreased diversity and stability observed in AD patients may significantly affect BA metabolism and signaling. Given recent evidence on BA neuroprotective and anti-inflammatory effects, new therapeutic targets have been explored including gut microbiota modulation by probiotics and dietary interventions, ursodeoxycholic acid supplementation, and use of BA receptor agonists.


Sign in / Sign up

Export Citation Format

Share Document