scholarly journals Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex

2008 ◽  
Vol 19 (6) ◽  
pp. 1273-1293 ◽  
Author(s):  
L. J. Martin ◽  
Z. Liu ◽  
J. Pipino ◽  
B. Chestnut ◽  
M. A. Landek
DNA Repair ◽  
2021 ◽  
pp. 103117
Author(s):  
Ruikui Zhang ◽  
Tao Wu ◽  
Peipei Zheng ◽  
Ming Liu ◽  
Guixiang Xu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takuma Nakatsuka ◽  
Keisuke Tateishi ◽  
Hiroyuki Kato ◽  
Hiroaki Fujiwara ◽  
Keisuke Yamamoto ◽  
...  

AbstractWhile the significance of acquired genetic abnormalities in the initiation of hepatocellular carcinoma (HCC) has been established, the role of epigenetic modification remains unknown. Here we identified the pivotal role of histone methyltransferase G9a in the DNA damage-triggered initiation of HCC. Using liver-specific G9a-deficient (G9aΔHep) mice, we revealed that loss of G9a significantly attenuated liver tumor initiation caused by diethylnitrosamine (DEN). In addition, pharmacological inhibition of G9a attenuated the DEN-induced initiation of HCC. After treatment with DEN, while the induction of γH2AX and p53 were comparable in the G9aΔHep and wild-type livers, more apoptotic hepatocytes were detected in the G9aΔHep liver. Transcriptome analysis identified Bcl-G, a pro-apoptotic Bcl-2 family member, to be markedly upregulated in the G9aΔHep liver. In human cultured hepatoma cells, a G9a inhibitor, UNC0638, upregulated BCL-G expression and enhanced the apoptotic response after treatment with hydrogen peroxide or irradiation, suggesting an essential role of the G9a-Bcl-G axis in DNA damage response in hepatocytes. The proposed mechanism was that DNA damage stimuli recruited G9a to the p53-responsive element of the Bcl-G gene, resulting in the impaired enrichment of p53 to the region and the attenuation of Bcl-G expression. G9a deletion allowed the recruitment of p53 and upregulated Bcl-G expression. These results demonstrate that G9a allows DNA-damaged hepatocytes to escape p53-induced apoptosis by silencing Bcl-G, which may contribute to the tumor initiation. Therefore, G9a inhibition can be a novel preventive strategy for HCC.


2008 ◽  
Vol 283 (22) ◽  
pp. 15512
Author(s):  
Navjotsingh Pabla ◽  
Shuang Huang ◽  
Qing-Sheng Mi ◽  
Rene Daniel ◽  
Zheng Dong

APOPTOSIS ◽  
2009 ◽  
Vol 14 (5) ◽  
pp. 699-710 ◽  
Author(s):  
Ting-Ting Yuan ◽  
Ying Huang ◽  
Ci-Xiang Zhou ◽  
Yun Yu ◽  
Li-Shun Wang ◽  
...  

2007 ◽  
Vol 405 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Emma V. Jones ◽  
Mark J. Dickman ◽  
Alan J. Whitmarsh

The JNK (c-Jun N-terminal kinase)/mitogen-activated protein kinase signalling pathway is a major mediator of stress responses in cells, including the response to DNA damage. DNA damage also causes the stabilization and activation of p73, a member of the p53 family of transcription factors. p73, like p53, can mediate apoptosis by up-regulating the expression of pro-apoptotic genes, including Bax (Bcl2-associated X protein) and PUMA (p53 up-regulated modulator of apoptosis). Changes in p73 expression have been linked to tumour progression, particularly in neuroblastomas, whereas in tumours that feature inactivated p53 there is evidence that p73 may mediate the apoptotic response to chemotherapeutic agents. In the present study, we demonstrate a novel link between the JNK signalling pathway and p73. We use pharmacological and genetic approaches to show that JNK is required for p73-mediated apoptosis induced by the DNA damaging agent cisplatin. JNK forms a complex with p73 and phosphorylates it at several serine and threonine residues. The mutation of JNK phosphorylation sites in p73 abrogates cisplatin-induced stabilization of p73 protein, leading to a reduction in p73 transcriptional activity and reduced p73-mediated apoptosis. Our results demonstrate that the JNK pathway is an important regulator of DNA damage-induced apoptosis mediated by p73.


Immunology ◽  
2016 ◽  
Vol 149 (1) ◽  
pp. 62-73 ◽  
Author(s):  
Kristine L. Holm ◽  
Randi L. Indrevaer ◽  
June Helen Myklebust ◽  
Arne Kolstad ◽  
Jan Øivind Moskaug ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Daniel Coutandin ◽  
Christian Osterburg ◽  
Ratnesh Kumar Srivastav ◽  
Manuela Sumyk ◽  
Sebastian Kehrloesser ◽  
...  

Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long periods of time, during which the high concentration of the p53 family member TAp63α sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization and concomitant activation upon detection of DNA damage. Here we show that the TAp63α dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism not requiring further translation of other cellular factors in oocytes and is associated with unfolding of the inhibitory structure that blocks the tetramerization interface. Using a combination of biophysical methods as well as cell and ovary culture experiments we explain how TAp63α is kept inactive in the absence of DNA damage but causes rapid oocyte elimination in response to a few DNA double strand breaks thereby acting as the key quality control factor in maternal reproduction.


2001 ◽  
Vol 21 (4) ◽  
pp. 1297-1310 ◽  
Author(s):  
Constantinos Koumenis ◽  
Rodolfo Alarcon ◽  
Ester Hammond ◽  
Patrick Sutphin ◽  
William Hoffman ◽  
...  

ABSTRACT Hypoxic stress, like DNA damage, induces p53 protein accumulation and p53-dependent apoptosis in oncogenically transformed cells. Unlike DNA damage, hypoxia does not induce p53-dependent cell cycle arrest, suggesting that p53 activity is differentially regulated by these two stresses. Here we report that hypoxia induces p53 protein accumulation, but in contrast to DNA damage, hypoxia fails to induce endogenous downstream p53 effector mRNAs and proteins. Hypoxia does not inhibit the induction of p53 target genes by ionizing radiation, indicating that p53-dependent transactivation requires a DNA damage-inducible signal that is lacking under hypoxic treatment alone. At the molecular level, DNA damage induces the interaction of p53 with the transcriptional activator p300 as well as with the transcriptional corepressor mSin3A. In contrast, hypoxia primarily induces an interaction of p53 with mSin3A, but not with p300. Pretreatment of cells with an inhibitor of histone deacetylases that relieves transcriptional repression resulted in a significant reduction of p53-dependent transrepression and hypoxia-induced apoptosis. These results led us to propose a model in which different cellular pools of p53 can modulate transcriptional activity through interactions with transcriptional coactivators or corepressors. Genotoxic stress induces both kinds of interactions, whereas stresses that lack a DNA damage component as exemplified by hypoxia primarily induce interaction with corepressors. However, inhibition of either type of interaction can result in diminished apoptotic activity.


Sign in / Sign up

Export Citation Format

Share Document