An Effective Acid–Base-Induced Liquid–Liquid Microextraction Based on Deep Eutectic Solvents for Determination of Testosterone and Methyltestosterone in Milk

2020 ◽  
Vol 58 (9) ◽  
pp. 880-886
Author(s):  
Xiao Li ◽  
Tao Yuan ◽  
Ting Zhao ◽  
Xiaomei Wu ◽  
Yaling Yang

Abstract An environmentally friendly method for the determination of testosterone and methyltestosterone by acid–base-induced deep eutectic solvents liquid–liquid microextraction (DES-ABLLME) combining with high-performance liquid chromatography was established. The deep eutectic solvent (DES) consisting of menthol:lauric acid:decanoic acid (3:1:1) can act as both hydrogen bond donor and hydrogen bond acceptor. In this approach, ammonia solution (NH3•H2O) is used as an emulsifier to react with DESs in the extraction process to generate salt and form milky white solution, achieving high extraction efficiency. Hydrochloric acid was used as a phase separator to change the emulsification state and promote the separation of extraction agent from water phase. A series of parameters were optimized including the volume of DES and the emulsifying agent, glucose concentration as well as hydrochloric acid volume. The method was linear in the range 0.5–100 μg mL−1 with a correlation coefficient (R) of 0.9999, and the limits of detection were 0.067 and 0.2 μg mL−1 for testosterone and methyltestosterone, respectively. This method was applied to analyze testosterone and methyltestosterone in milk samples, and the recoveries were between 89.2 and 108.2%.

2020 ◽  
Vol 11 (3) ◽  
pp. 3017-3023
Author(s):  
Balakrishnan I ◽  
Jawahar N ◽  
Senthil Venkatachalam ◽  
Debosmita Datta

Eutectic mixture (EM) is as a mixture of more than one substance that does not interact individually to create a new entity but in a particular ratio that exhibits a lower range of melting point than it had in individual. EM should be formulated in such a way that it should have major advantages in pharmaceutical industries. EM can be a mixture of Active Pharmaceutical Ingredients (APIs), or different ratios of APIs and excipients, or various excipients. Deep eutectic solvents containing APIs (API-DES) considered as an innovative approach to form different APIs in the liquid state. This new approach of liquid form is versatile and plays an important role in drug delivery. The selection of ideal hydrogen bond-donor (HBD) and hydrogen bond-acceptor (HBA) is an essential parameter. Ionic liquids (IL), derivatives of deep eutectic solvents (DES) have got much attention since it can replace harmful organic solvent by their extraordinary properties. Therapeutic deep eutectic solvents (THEDESs) are considered to be an exceptional option in the advancement of biomedicine. This can be utilized for improvising drug solubility, bioavailability as well as drug permeation through the skin. Natural deep eutectic solvent (NADES) can be considered as an alternate option, replacing harsh solvents. It has special characteristics of better biodegradability and biocompatibility. These NADES mainly used to separate and purification of natural compounds. This review focuses on the eutectic mixture and its application in the area of drug delivery systems, and pharmaceutical and pharmacological fields.


2020 ◽  
Author(s):  
◽  
Chip Joseph II Smith

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI--COLUMBIA AT REQUEST OF AUTHOR.] Pollutants have become more prevalent in the air, water, and ground, necessitating the development of technologies that would help, limit, reverse, monitor, measure, and recycle prevalent pollutants. Ionic liquids (ILs), or molten salts that are liquid at or below 100[degrees]C, as well as deep eutectic solvents (DESs), a mixture of a hydrogen bond donor with a strong hydrogen bond acceptor that remains liquid upon cooling, have been popularized as greener alternatives in industry. These liquids tend to have large electrochemical and thermal windows, a very small vapor pressure, and can be fine-tuned for many applications. The liquid state of ILs and DESs makes them quite useful in their application but complicates their handling. Ionogels and eutectogels enable the liquid-like dynamics of these solvents while adding a pseudo-solid like character that makes for ease of handling. Herein, a new group of confined ILs and DESs within a cellulosic matrix called bacterial cellulose iono/eutecto gels are produced that are shown to be applicable to analyte detection and are studied for a better understanding of the dynamics within the gel. These intriguing gels are flexible, transparent, size-tuneable, shape-tuneable, amenable to incorporation of dyes or other functional material, and capable of confining 99 wt.% of a solvent with little leakage from the gel. These materials affect the crystallinity of cellulose little, while the liquid presents a diffusional change that stems from restructuring of the fluid. These gels are capable of detection of ammonia, hydrogen sulfide, and temperature. Given their properties, iono/eutecto gels offer use in applications, such as electrochemical devices, wound healing, drug delivery, and carbon capture/separation membranes.


2017 ◽  
Author(s):  
◽  
Maryam Al Ameri

In this study, green solvent-based pretreatment was developed for improving the conversion of switchgrass to acetoin. Deep eutectic solvents (DESs), comprising choline chloride (ChCl) as a hydrogen-bond acceptor (HBA) and various chemical as a hydrogen-bond donor (HBD), were used to pretreat switchgrass. Different HBD groups, including polyalcohol, amid, diazole, and carboxylic acid, were used to synthesize DESs. The DESs using ChCl-formic acid and ChCl-lactic acid-acetic acid showed excellent performance in enhancing switchgrass digestibility. The obtained hydrolysate was successfully detoxified by using overliming detoxification, which was further used for acetoin fermentation by Bacillus licheniformis (NRRL B-642). The yield and titer of the produced acetoin were 0.377 g/g and 19.6 g/L, respectively. Our research demonstrates that DES pretreatment is an effective method for reducing biomass recalcitrance and improving the conversion of biomass into chemicals.


2021 ◽  
Vol 11 (6) ◽  
pp. 14620-14633

Turmeric contains curcumin as one of the active constituents, which gives yellow color and possesses lots of pharmacological actions. Even though curcumin has lots of pharmacological actions till now, it has not been approved as a medicine due to its low water solubility, permeability, and poor bioavailability. Deep eutectic solvent (DES) can be prepared by simply mixing two or more solid components, [among the two one is hydrogen bond donor (HBD) and another is hydrogen bond acceptor (HBA)] at a definite molar ratio where the solid components by self-association converted into a liquid at room temperature (RT). Natural deep eutectic solvents (NADES) are a specific subgroup of DES containing primary plant-based metabolites such as organic acids, alcohols, amino acids, or sugars. In this work, natural hydrophobic DESs were prepared with Camphor, Menthol, and Thymol. This was prepared from different ratios of Menthol:Thymol 1:1 to 1:5 and 1:1 to 5:1 (MT-DES); Camphor:Thymol 1:1 to 1:5 and 1:1 to 5:1 (CT-NADES); Camphor:Menthol 1:1 to 1:5 and 1:1 to 2:1 (CM-NADES). The pH and viscosity of prepared DESs were determined with the help of a digital pH meter and Brookfield viscometer. The solubility of curcumin in different NADESs was determined at room temperature (RT) to higher temperatures. The formation of different clear DES was obtained with slight heat. There was no difference in pH for the NADESs prepared without and with heat. Regarding the viscosity CM-DES (1:1) showed less viscosity when compared to other NADESs. The solubility of curcumin was found to be nearly double when it was dissolved in NADES for 1 hr at 35-40°C compared to 48 h stirring at 500 rotations per minute (rpm) at RT. Among different NADESs, curcumin solubility was found to be more in CM (1:1) ratio when compared to other NADESs.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Guochao Xu ◽  
Hao Li ◽  
Wanru Xing ◽  
Lei Gong ◽  
Jinjun Dong ◽  
...  

Abstract Background Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation. Results Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars as high as 53.5 g L−1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU g−1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g L−1 and 706 g kg−1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g L−1 was achieved with butanol yield of 137 g kg−1 pretreated corncob by Clostridium saccharobutylicum DSM13864. Conclusions Ethylamine and lactic acid-based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Rima J. Isaifan ◽  
Abdukarem Amhamed

In the recent past few years, deep eutectic solvents (DESs) were developed sharing similar characteristics to ionic liquids but with more advantageous features related to preparation cost, environmental impact, and efficiency for gas separation processes. Amongst many combinations of DES solvents that have been prepared, reline (choline chloride as the hydrogen bond acceptor mixed with urea as the hydrogen bond donor) was the first DES synthesized and is still the one with the lowest melting point. Choline chloride/urea DES has proven to be a promising solvent as an efficient medium for carbon dioxide capture when compared with amine alone or ionic liquids under the same conditions. This review sheds light on the preparation method, physical and chemical characteristics, and the CO2 absorption capacity of choline chloride/urea DES under different temperatures and pressures reported up to date.


Author(s):  
Gustavo Gomes ◽  
Renan Mattioli ◽  
Julio Cezar Pastre

The use of non-conventional solvent systems, such as deep eutectic solvents (DES), for biomass processing is a growing interest. DES are formed by two or more components, usually solids at room temperature, which can interact with each other via hydrogen bonding, from a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD), resulting in a liquid phase. The most studied HBA in the literature is choline chloride with several HBD and their use have been extensively reviewed. However, other abundant and natural HBA can be successfully applied on the preparation of different DES, e.g., amino acids. These amino acid-based DES have been used in biomass pretreatment, providing the fractionation of the main macromolecular components by lignin solubilization. In addition, amino acid-based DES can be applied in biomass chemical conversion to obtaining platform chemicals such as furanic derivatives. Bearing this in mind, this review focuses on exploring the use of amino acid-based DES on biomass processing, from pretreatment to chemical conversion.


2020 ◽  
Author(s):  
Guochao Xu ◽  
Hao Li ◽  
Wanru Xing ◽  
Lei Gong ◽  
Jinjun Dong ◽  
...  

Abstract Background: Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation.Results: Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars of as high as 53.5 g·L–1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU·g–1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g·L–1 and 706 g·kg–1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g·L–1 was achieved with butanol yield of 137 g·kg–1 pretreated corncob by Clostridium saccharobutylicum DSM13864.Conclusions: Ethylamine and lactic acid based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.


2019 ◽  
Vol 964 ◽  
pp. 109-114 ◽  
Author(s):  
Siti Zullaikah ◽  
Nizar Dwi Wibowo ◽  
I Made Gede Eris Dwi Wahyudi ◽  
M. Rachimoellah

High content of free fatty acids (FFA) in crude rice bran oil (CRBO) needs to be separated through deacidification. Generally, deacidification process that is widely used are chemical and physical processes which causes the loss of bioactive compounds (γ-oryzanol) and un-environmentally friendly. The liquid-liquid extraction (LLE) using deep eutectic solvents (DES) to remove FFA and preserve g-oryzanol would be implemented in this study. DES with different hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) with certain molar ratio such as Choline Chloride (ChCl)-Ethylene glycol 1:2 (DES I), ChCl-Glycerol 1:1 (DES II), ChCl-Urea 1:2 (DES III), ChCl-Oxalic acid 1:2 (DES IV), and Betaine Monohydrate-Glycerol 1:8 (NADES) were used as solvent to extract FFA from dewaxed/degummed RBO (DDRBO) for certain extraction time (30, 60, 120, 180, and 240 min) and extraction temperature (30°C, 40°C, 50°C, 60°C, and 70°C) under stirring (200 rpm). Deacidification using DES I for 240 min. and temperature of 50 °C was the optimum solvent to remove FFA (19.03 ± 2.33 %) and preserve g-oryzanol (recovery of g-oryzanol was 51.30 ± 1.77 %). The results also revealed that the longer time of extraction would be increased removal of FFA and decreased recovery of g-oryzanol. The higher temperature of extraction would be increased removal of FFA. In this work, temperature of 50 °C was the best extraction temperature of FFA since DES has highest solubility at this temperature.


Sign in / Sign up

Export Citation Format

Share Document