Chromatographic Separation of Fluoroquinolone Drugs and Drug Degradation Profile Monitoring through Quality-by-Design Concept

2020 ◽  
Vol 59 (1) ◽  
pp. 55-63
Author(s):  
Satya Prasad Asu ◽  
Naveen Kumar Sompalli ◽  
Akhila Maheswari Mohan ◽  
Prabhakaran Deivasigamani

Abstract The article reports on the development of an efficient, robust and sensitive HPLC-DAD method for the simultaneous determination of five fluoroquinolone-based antimicrobial drugs, namely ciprofloxacin, moxifloxacin, norfloxacin, ofloxacin and pefloxacin in both aquatic and tablet formulations. The robustness of the high-performance liquid chromatography with diode-array detection (HPLC-DAD) method has been evaluated through the concepts of quality-by-design (QbD) and full factorial design of experiments (DoEs), using a Minitab 17 statistical tool. The proposed method offers sequential separation with well-defined peak shape and resolution, and has also been evaluated by following international council for harmonization (ICH) pharmaceutical guidelines. A linear signal response has been achieved for the target fluoroquinolones (FQ) drugs in the concentration range of 45–20,000 ng/mL, with an average correlation coefficient (r2) value of 0.9997, and a data precision and accuracy range of 99.3–100.9%, with an RSD value of ≤0.95%, for hexaplicate measurements. The methodology offers superior sensitivity for the target FQ drugs, with the limit of detection (LD) range of 10–25 ng/mL, and the limit of quantification (LQ) range of 51–86 ng/mL, respectively. Using the proposed method, the article carries the first of its kind report in studying the degradation profile monitoring and drug assay determination in tablet formulations and under various physiological buffer stress conditions, for pharmaceutical validation.

Author(s):  
SHRADDHA V TATHE ◽  
MORESHWAR P MAHAJAN ◽  
RASHMI G PINJARKAR ◽  
ARUN M KASHID

Objective: The aim of this paper is to create a new, systematic high-performance thin-layer chromatography (HPTLC) method for ciprofloxacin that is based on quality by design (QbD). Methods: The mobile phase was chloroform: IPA: H2O: Formic Acid (2:7:0.5:0.5V/V), and the chromatographic separation was performed on aluminum-backed silica gel 60 F254 plates. Ciprofloxacin was detected using UV light at 278nm. In factor screening studies, a 3-factor 17-run standard 3-level factorial design was used, and a Box-Behnken design was used to optimize HPTLC experimental parameters for obtaining anticipated chromatographic conditions. The basic method parameters were tested to understand risk assessment. Three independent parameters, such as saturation time, band duration, and migration distance, were chosen and analyzed based on the risk assessment to see if these three parameters influenced the responses. For ciprofloxacin, the method produces a compact and well-resolved band at Rf = 0.40 0.02. In the linear regression analysis performed on ciprofloxacin, the regression coefficient was found to be r2 = 0.996. Results: According to the International Council on Harmonization (ICH) guidelines, it was validated for validation parameters such as accuracy, precision, robustness, the limit of detection, and the limit of quantification. The proposed method for ciprofloxacin determination was found to be straightforward, precise, reliable, stable, and sensitive. Conclusion: The QbD method produced a more robust method that can generate accurate, high-quality, and reliable data during the process, and it can be effectively used in the routine inspection of Ciprofloxacin in the tablets dosage form.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nadereh Rahbar ◽  
Fatemeh Ahmadi ◽  
Zahra Ramezani ◽  
Masoumeh Nourani

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO nanoparticles hydrogel fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear ranging between 0.1–500 µg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 µg L−1. Within-day and between-day relative standard deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).


Author(s):  
Kamran Ashraf ◽  
Syed Adnan Ali Shah ◽  
Mohd Mujeeb

<p><strong>Objective: </strong>A simple, sensitive, precise, and accurate stability indicating HPTLC (high-performance thin-layer chromatography) method for analysis of 10-gingerol in ginger has been developed and validated as perICH guidelines.</p><p><strong>Methods: </strong>The separation was achieved on TLC (thin layer chromatography) aluminum plates pre-coated with silica gel 60F<sub>254</sub> using n-hexane: ethyl acetate 55:45 (%, v/v) as a mobile phase. Densitometric analysis was performed at 569 nm.</p><p><strong>Results: </strong>This system was found to have a compact spot of 10-gingerol at <em>R</em><sub>F</sub> value of 0.57±0.03. For the proposed procedure, linearity (<em>r</em><sup>2</sup> = 0.998±0.02), limit of detection (18ng/spot), limit of quantification (42 ng/spot), recovery (ranging from 98.35%–100.68%), were found to be satisfactory.</p><p><strong>Conclusion: </strong>Statistical analysis reveals that the content of 10-gingerol in different geographical region varied significantly. The highest and lowest concentration of 10-gingerol in ginger was found to be present in a sample of Patna, Lucknow and Surat respectively which inferred that the variety of ginger found in Patna, Lucknow are much superior to other regions of India.</p>


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 32-37
Author(s):  
Vijaya Lakshmi Marella ◽  
Chaitanya S. N ◽  

A selective and sensitive reverse phase High Performance Liquid Chromatographic method has been developed and validated for the estimation of lornoxicam in bulk, pharmaceutical dosage forms and in dissolution samples. The analysis was performed isocratically on an Inertsil column (250* 4.6 mm, 5 µm) using a mass spectrometric compatible mobile phase of 10 mM ammonium acetate: acetonitrile (50:50 V/V) at a flow rate of 1 mL/min.The detection wavelength was 290 nm. The retention time was found to be 4.573 min for lornoxicam. The linearity of the method has been satisfied with Beer Lambert’s law in the concentration range of 5-25 µg/mL with a correlation coefficient of 0.9988. The mean recoveries assessed for lornoxicam were in the range of 100.39-101.86 %, indicating good accuracy of the method. The limit of detection and limit of quantification were found to be 0.03 and 0.11 µg/mL, respectively. The developed method has been statistically validated in accordance with ICH guidelines and found to be mass spectrometric compatible, simple, precise, and accurate with the prescribed values. Thus, the proposed method was successfully applied for the estimation of lornoxicam in routine quality control analysis of bulk, formulations and in dissolution samples.


Author(s):  
Bhupender Tomar ◽  
Ankita Sharma ◽  
Inder Kumar ◽  
Sandeep Jain ◽  
Pallavi Ahirrao

A simple, precise, and accurate reverse phase high performance liquid chromatographic method (RP-HPLC) was developed and validated for the estimation of the combination of 5- Fluorouracil (5-FU) and Imiquimod in active pharmaceutical ingredients (APIs). The method was carried out on Phenomenex C18 (250 × 4.6mm I.D., 5𝜇m) using isocratic elution mode. The mobile phase was used as Acetonitrile: 10mM potassium dihydrogen orthophosphate: triethylamine (40:59.9:0.1, v/v, pH 4.5 with orthophosphoric acid) and Water: ACN (50:50 v/v) was used as a diluent. The concentration of solvents was 1-20µg/ml and the volume of injection was 20µl with the flow rate of 1.2ml/min. The retention times for 5-FU and Imiquimod were found to be 1.9±0.5 and 6.6±0.5 min respectively. The absorption maxima of 5FU and Imiquimod were found 267nm and 227nm respectively. The method was validated as per ICH guidelines. All the data were found within the specified limits. The limit of detection (LOD) and limit of quantification (LOQ) of 5- Fluorouracil were found to be 0.015μg/mL and 0.048 μg/mL, respectively, and Imiquimod was found to be 0.078μg/mL and 0.237μg/mL, respectively. The method developed in the present study was found to be sensitive, specific, and precise and can be applied for the simultaneous estimation of 5-FU and Imiquimod.


2021 ◽  
pp. 1-11
Author(s):  
Sultan M. Alshahrani ◽  
John Mark Christensen

This study was designed to develop and validate a simple and efficient high performance liquid chromatography (HPLC) method to determine flunixin concentrations in Asian elephant’s (Elephas maximus) plasma. Flunixin was administered orally at a dose of 0.8 mg/kg, and blood samples were collected. Flunixin extraction was performed by adding an equal amount of acetonitrile to plasma and centrifuging at 4500 rpm for 25 minutes. The supernatant was removed, and flunixin was analyzed using HPLC-UV detection. Two methods were developed and tested utilizing two different mobile phases either with or without adding methanol (ACN: H2O vs. ACN: H2O: MeOH). Both methods showed excellent linearity and reproducibility. The limit of detection was 0.05 ug/ml and limit of quantification was 0.1 ug/ml. the efficiency of flunixin recovery was maximized by the addition of methanol to mobile phase (ACN: H2O: MeOH as 50:30:20) at 95% in comparison to 23% without methanol. In conclusion, adding methanol to HPLC methods for extraction of flunixin from elephants’ plasma yielded higher recovery rate than without methanol.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (05) ◽  
pp. 48-52
Author(s):  
A Lodhi ◽  
◽  
A Jain ◽  
B. Biswal

A validated high performance liquid chromatographic method was developed for the determination of chromium picolinate in pharmaceutical dosage forms. The analysis was performed at room temperature using a reversed-phase ODS, 5µm (250×4.6) mm column. The mobile phase consisted of acetonitrile: buffer (60:40 V/V) at a flow rate of 0.5 mL/min. The PDA-detector was set at 264 nm. The developed method showed a good linear relationship in the concentration range from 1.5 – 12.5 µg/mL with a correlation coefficient from 0.999. The limit of detection and limit of quantification were 0.0540513 and 0.1637919 µg/mL respectively.


Author(s):  
Murat Soyseven ◽  
Rüstem Keçili ◽  
Hassan Y Aboul-Enein ◽  
Göksel Arli

Abstract A novel analytical method, based on high-performance liquid chromatography with a UV (HPLC-UV) detection system for the sensitive detection of a genotoxic impurity (GTI) 5-amino-2-chloropyridine (5A2Cl) in a model active pharmaceutical ingredient (API) tenoxicam (TNX), has been developed and validated. The HPLC-UV method was used for the determination of GTI 5A2Cl in API TNX. The compounds were separated using a mobile phase composed of water (pH 3 adjusted with orthophosphoric acid): MeOH, (50:50: v/v) on a C18 column (150 × 4.6 mm i.d., 2.7 μm) at a flow rate of 0.7 mL min−1. Detection was carried out in the 254 nm wavelength. Column temperature was maintained at 40°C during the analyses and 10 μL volume was injected into the HPLC-UV system. The method was validated in the range of 1–40 μg mL−1. The obtained calibration curves for the GTI compound was found linear with equation, y = 40766x − 1125,6 (R2 = 0.999). The developed analytical method toward the target compounds was accurate, and the achieved limit of detection and limit of quantification values for the target compound 5A2Cl were 0.015 and 0.048 μg mL−1, respectively. The recovery values were calculated and found to be between 98.80 and 100.03%. The developed RP-HPLC-UV analytical method in this research is accurate, precise, rapid, simple and appropriate for the sensitive analysis of target GTI 5A2Cl in model API TNX.


2017 ◽  
Vol 20 (2) ◽  
pp. 241-249 ◽  
Author(s):  
A. Jasiecka-Mikołajczyk ◽  
J.J. Jaroszewski

Abstract Tigecycline (TIG), a novel glycylcycline antibiotic, plays an important role in the management of complicated skin and intra-abdominal infections. The available data lack any description of a method for determination of TIG in avian plasma. In our study, a selective, accurate and reversed-phase high performance liquid chromatography-tandem mass spectrometry method was developed for the determination of TIG in turkey plasma. Sample preparation was based on protein precipitation and liquid-liquid extraction using 1,2-dichloroethane. Chromatographic separation of TIG and minocycline (internal standard, IS) was achieved on an Atlantis T3 column (150 mm × 3.0 mm, 3.0 μm) using gradient elution. The selected reaction monitoring transitions were performed at 293.60 m/z → 257.10 m/z for TIG and 458.00 m/z → 441.20 m/z for IS. The developed method was validated in terms of specificity, selectivity, linearity, lowest limit of quantification, limit of detection, precision, accuracy, matrix effect, carry-over effect, extraction recovery and stability. All parameters of the method submitted to validation met the acceptance criteria. The assay was linear over the concentration range of 0.01-100 μg/ml. This validated method was successfully applied to a TIG pharmacokinetic study in turkey after intravenous and oral administration at a dose of 10 mg/kg at various time-points.


2020 ◽  
Vol 11 (1) ◽  
pp. 985-992
Author(s):  
Hymavati Muppalla ◽  
Kiranmayi Peddi

The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers across the globe. The aim of the present study was to assess the level of pesticide residues in Okra in India. A multi-residue method for the quantification of fifty-four pesticides in okra is described in this work. The present study employed a modified quick, easy cheap, effective rugged and safe (QuEChERS) extraction procedure followed by UHPLC-MS/MS (Ultra-High-Performance Liquid Chromatography coupled to Tandem Mass Spectrometry) analysis. Validation of the method was according to the guidelines given by European Union SANCO/12571/2013. The levels of validation were 10.0, 50.0 and 100 µg kg-1. The following parameters such as linearity, the limit of detection (LOD) (nearer to 0.005 mg kg-1) and limit of quantification (LOQ) (nearer to 0.01 mg kg-1) were set to be acceptable. The trueness of the method for 54 pesticides in all Okra commodities was between 80-110% with satisfactory repeatability and within-run reproducibility except for the pesticide residues such as Thiamethoxam and Fenamidone. The measurement of uncertainty for each of the pesticide was below 50% and was estimated to be in the range of 5.37% - 10.71%, which meets the criteria established in the SANCO/12571/2013 document (European Union, 2013). This method is concluded to be applicable for the determination of pesticide residues in Okra.


Sign in / Sign up

Export Citation Format

Share Document