scholarly journals Large-Scale Patterns of Molt Activation in the Flight Feathers of two Albatross Species

The Condor ◽  
2005 ◽  
Vol 107 (4) ◽  
pp. 835-848 ◽  
Author(s):  
Ann E. Edwards ◽  
Sievert Rohwer

Abstract Laysan Albatross (Phoebastria immutabilis) and the closely-related Black-footed Albatross (P. nigripes) replace 20%–90% of their 35–41 wing flight feathers every year. Large-scale molt patterns (patterns between rather than within molt series) account for 77% of the variation in the number of flight feathers replaced. We identified four molt series: series A—the five outer primaries; series B—the five inner primaries plus four outer secondaries; series C—the middle secondaries; and series D—the inner secondaries. A fifth molt series may lie between series C and D. Each year, series A and D initiate molt, but series B and C may or may not initiate molt. The result is four “annual molt patterns”: ABCD, ABD, ACD, and AD. Temporally overlapping waves of molt never occur within series A or B, but about one third of the time they occur within series C and D. Multiple, spatially defined waves of molt (replaced feathers separated by unreplaced feathers) never occur within series A, but occur about two thirds of the time within series B, C, and D. The inner primaries and outer secondaries constitute a single molt series, probably to equilibrate between series total feather length, and thus, total molt duration. Studies of foraging range and reproduction in albatrosses would benefit from the development of species-specific indices of molt duration and extent that are biologically as well as statistically defensible. The number of outer primary feathers replaced and the number of molt series that activate molt are two such indices for Laysan and Black-footed Albatrosses.

2018 ◽  
Vol 25 (1) ◽  
pp. 19-22
Author(s):  
Jin-Won Yang ◽  
Seung-Gu Kang ◽  
Won-Ho Lee ◽  
Meong-Kyu Jeong

Author(s):  
Yan Cui ◽  
Wenqiao Wayne Yuan ◽  
Zhijian Pei

Continuous use of petroleum derived fuels is widely recognized as unsustainable due to depleting supplies and the accumulation of greenhouse gases in the environment. Renewable, carbon neutral transport fuels are needed for environmental and economic sustainabilities. Algae have been demonstrated to be one of the most promising sources for biofuel production. However, large-scale algae production and harvesting for energy manufacturing are too costly using existing methods. The approach of growing algae on solid carriers is innovative and can potentially lead to cost-effective manufacturing of algae biofuels. As cells approach to the solid surface, many factors come in to influence microbial attachment such as the surface wettability, free energy, polarity, roughness and topography. Surface wettability plays an important role in the initial cell attachment. For further contact, surface free energy and polarity are more directly related to cell-substratum attachment strength. Surface roughness and texture are species-specific parameters and have been applied widely in attachment studies.


2018 ◽  
Vol 15 (16) ◽  
pp. 5189-5202 ◽  
Author(s):  
Gustaf Granath ◽  
Håkan Rydin ◽  
Jennifer L. Baltzer ◽  
Fia Bengtsson ◽  
Nicholas Boncek ◽  
...  

Abstract. Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is species-specific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue δ18O tracks the δ18O isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia using two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in δ13C values between species. For S. magellanicum δ13C decreased with increasing height above the water table (HWT, R2=17 %) and was positively correlated to productivity (R2=7 %). Together these two variables explained 46 % of the between-site variation in δ13C values. For S. fuscum, productivity was the only significant predictor of δ13C but had low explanatory power (total R2=6 %). For δ18O values, approximately 90 % of the variation was found between sites. Globally modelled annual δ18O values in precipitation explained 69 % of the between-site variation in tissue δ18O. S. magellanicum showed lower δ18O enrichment than S. fuscum (−0.83 ‰ lower). Elevation and climatic variables were weak predictors of tissue δ18O values after controlling for δ18O values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue δ18O values from modelled annual δ18O values in precipitation, and (b) the possibility of relating tissue δ13C values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kim de Mutsert ◽  
Kristy A. Lewis ◽  
Eric D. White ◽  
Joe Buszowski

Coastal erosion and wetland loss are affecting Louisiana to such an extent that the loss of land between 1932 and 2016 was close to 5,000 km2. To mitigate this decline, coastal protection and restoration projects are being planned and implemented by the State of Louisiana, United States. The Louisiana Coastal Master Plan (CMP) is an adaptive management approach that provides a suite of projects that are predicted to build or maintain land and protect coastal communities. Restoring the coast with this 50-year large-scale restoration and risk reduction plan has the potential to change the biomass and distribution of economically and ecologically important fisheries species in this region. However, not restoring the coast may have negative impacts on these species due to the loss of habitat. This research uses an ecosystem model to evaluate the effects of plan implementation versus a future without action (FWOA) on the biomass and distribution of fisheries species in the estuaries over 50 years of model simulations. By simulating effects using a spatially-explicit ecosystem model, not only can the changes in biomass in response to plan implementation be evaluated, but also the distribution of species in response to the planned restoration and risk reduction projects. Simulations are performed under two relative sea level rise (SLR) scenarios to understand the effects of climate change on project performance and subsequent fisheries species biomass and distribution. Simulation output of eight economically important fisheries species shows that the plan mostly results in increases in species biomass, but that the outcomes are species-specific and basin-specific. The SLR scenario highly affects the amount of wetland habitat maintained after 50 years (with higher levels of wetland loss under increased SLR) and, subsequently, the biomass of species depending on that habitat. Species distribution results can be used to identify expected changes for specific species on a regional basis. By making this type of information available to resource managers, precautionary measures of ecosystem management and adaptation can be implemented.


2021 ◽  
Vol 4 ◽  
Author(s):  
Christina Wiebe ◽  
Petra Nowak ◽  
Hendrik Schubert

Assessing the biodiversity of an ecosystem plays a major role in ecosystem management. However, proper determination on species-level is often tricky when morphological features are scarce and especially rare species require huge sampling efforts to be detected in the aquatic realm. As an alternative to conventional methods, environmental samples can be examined via the eDNA method, allowing for large-scale integration as well as taxa resolution independent from expression of morphological characters. However, to apply this technique genetic markers that are specific to a species or at least a genus are required. Such markers until now have been successfully developed only for a few well studied taxonomic groups like, e.g., fishes and amphibians, but are still missing for others, especially plants and algae (e.g. Bista et al. 2017). This project focusses on the development of species-specific markers for the macrophytic green algae Tolypella canadensis (Characeae, Charophyta), a rare alga preferring deep water and known so far mainly from remote places. Tolypella canadensis is a circumpolar species and prefers oligotrophic lakes, where it grows in depths up to 13 m (Langangen 2002; Romanov and Kopyrina 2016). In addition, proper determination of Tolypella-species is a field of a few specialists, further complicating monitoring or even detection of this rare species. The design of the species-specific primers was based on reference nucleotide sequences of the chloroplast genes rbcL, psbC and atpB and of the ribosomal internal transcribed spacer regions ITS1 and ITS2, obtained from GenBank (Perez et al. 2017). To determine the specificity of the newly designed primers, DNA isolates obtained from T. canadensis specimens collected from the Torneträsk (Sweden, 2018) and other charophyte species were prepared in different proportions. The sensitivity of the primers was experimentally assayed by using serial dilutions of T. canadensis DNA. Additionally, a mock test comprised of a sample with the DNA of several charophyte species was conducted and finally, the markers were tested on environmental samples from the Torneträsk. Tolypella canadensis-specific primers of the ITS2 region yielded positive PCR amplifications of one single band when T. canadensis was present in a sample. Cross-amplification was not found during the mock test; other charophyte species did not yield positive amplification. The eDNA samples from the Torneträsk validated the performance of the ITS2 marker. The T. canadensis-specific marker designed in this project was proven to be sensitive and accurate. It could be recommended as a useful tool to detect the presence of T. canadensis DNA, even at low concentration and in complex samples containing other charophyte species.


2021 ◽  
Author(s):  
Muriel Brückner ◽  
Christian Schwarz ◽  
Giovanni Coco ◽  
Anne Baar ◽  
Márcio Boechat Albernaz ◽  
...  

<p>Benthic species that live within estuarine sediments stabilize or destabilize local mud deposits through their eco-engineering activities, affecting the erosion of intertidal sediments. Possibly, the altered magnitudes in eroded sediment affect the large-scale redistribution of fines and hence morphological change. To quantify this biological control on the morphological development of estuaries, we numerically model i) biofilms, ii) two contrasting bioturbating species present in NW-Europe, and iii) their combinations by means of our novel eco-morphodynamic model. The model predicts local mud erodibility based on species pattern, which dynamically evolves from the hydrodynamics, soil mud content, competition and grazing, and is fed back into the hydromorphodynamic computations.</p><p>We find that biofilms reduce mud erosion on intertidal floodplains and stabilize estuarine morphology, whereas the two bioturbators significantly enhance inter- and supratidal mud erosion and bed elevation change, leading to a large-scale reduction in deposited mud and a widening of the estuary. In turn, the species-dependent changes in mud content redefines their habitat and leads to a redistribution of species abundances. Here, the eco-engineering affects habitat conditions and species abundance while species interactions determine species dominance. Our results show that species-specific biostabilization and bioturbation determine large-scale morphological change through mud redistribution, and at the same time affect species distribution. This suggests that benthic species have subtly changed estuarine morphology through space and time and that aggravating habitat degradation might lead to large effects on the morphology of future estuaries.</p>


Diversity ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 78 ◽  
Author(s):  
Davide Maggioni ◽  
Luca Saponari ◽  
Davide Seveso ◽  
Paolo Galli ◽  
Andrea Schiavo ◽  
...  

Green fluorescence is a common phenomenon in marine invertebrates and is caused by green fluorescent proteins. Many hydrozoan species display fluorescence in their polyps and/or medusa stages, and in a few cases patterns of green fluorescence have been demonstrated to differ between closely related species. Hydrozoans are often characterized by the presence of cryptic species, due to the paucity of available morphological diagnostic characters. Zanclea species are not an exception, showing high genetic divergence compared to a uniform morphology. In this work, the presence of green fluorescence and the morpho-molecular diversity of six coral- and bryozoan-associated Zanclea species from the Maldivian coral reefs were investigated. Specifically, the presence of green fluorescence in polyps and newly released medusae was explored, the general morphology, as well as the cnidome and the interaction with the hosts, were characterized, and the 16S rRNA region was sequenced and analyzed. Overall, Zanclea species showed a similar morphology, with little differences in the general morphological features and in the cnidome. Three of the analyzed species did not show any fluorescence in both life stages. Three other Zanclea species, including two coral-associated cryptic species, were distinguished by species-specific fluorescence patterns in the medusae. Altogether, the results confirmed the morphological similarity despite high genetic divergence in Zanclea species and indicated that fluorescence patterns may be a promising tool in further discriminating closely related and cryptic species. Therefore, the assessment of fluorescence at a large scale in the whole Zancleidae family may be useful to shed light on the diversity of this enigmatic taxon.


2018 ◽  
Vol 29 (4) ◽  
pp. 527-541 ◽  
Author(s):  
SARAH K. FAEGRE ◽  
LINDSEY NIETMANN ◽  
DYLAN HUBL ◽  
JAMES C. HA ◽  
RENEE R. HA

SummaryKnowledge of species-specific spatial ecology is critical for applying appropriate management strategies to maximise conservation outcomes. We used radio-telemetry to describe spatial behaviour of the critically endangered, island-endemic Mariana Crow Corvus kubaryi. To determine whether management strategies should reflect life stage, we measured the home ranges and daily movements of 22 Mariana Crows. Fledgling mobility was low during the first 31 days post-fledging and effects of age (fledgling or sub-adult) and time (months post-fledging or post-dispersal) were often driven entirely by this period. After controlling for reduced fledgling mobility, cumulative home range size increased over time for both age classes and was, on average, more than twice the area for sub-adults than fledglings. Sub-adults also tended to make longer daily movements than fledglings. Non-cumulative, monthly home range areas did not increase over time but the average overlap in home range area between consecutive months was only 63%, suggesting large shifts in space use each month. These results highlight the dynamic nature of Mariana Crow home ranges and suggest that large-scale management efforts are critical for protecting both breeding and non-breeding individuals. The application of the traditional home range concept to Mariana Crows and other wide-ranging passerine birds may result in sub-optimal management strategies. Instead, we recommend that the spatial and temporal scale of conservation efforts be informed by species-specific spatial behaviour across all relevant life stages.


2019 ◽  
Vol 22 (2) ◽  
pp. 437-453 ◽  
Author(s):  
David Ramler ◽  
Hubert Keckeis

Abstract Invasive gobies can have severe detrimental effects on local fish communities, however, direct methods for population control are often insufficient (i.e. fishing) or not feasible (i.e. poisoning). Indirect methods, such as habitat modifications in the course of restoration programs, appear promising but are poorly studied. In this study, we investigate the effects of different restoration measures on the abundance and occurrence of non-native gobies in the main stem of a free-flowing section of the Danube and attempt to disentangle these measures from general large-scale trends by applying a Before-After-Control-Impact design. We found three invasive goby species (racer, bighead, and round goby) in the sampling area, partly with very high abundances. Four to six years after the installation, the measures had negative (riprap removal), neutral (side arm reconnection), or positive (groyne field adaptations) effects on goby abundances. We conclude that the impact of the measures depends on the type of intervention, is species-specific, and is largely related to substrate composition. Independent from the effect of the measures, abundances of bighead and round goby dropped in the project and reference sections after the pre-survey. This general decline probably indicates a stabilization phase of the goby populations on a lower level, but may also be influenced by a major flood event. Nevertheless, our results indicate a high potential of shoreline modifications for invasive species control, calling for considering and incorporating them in river restoration programs.


Sign in / Sign up

Export Citation Format

Share Document