scholarly journals P249MiR-map: a comprehensive atlas of vascular microRNA expression shows vessel-specific expression profiles of the vasoactive 14q32 microRNAs

2018 ◽  
Vol 114 (suppl_1) ◽  
pp. S64-S64
Author(s):  
EAC Goossens ◽  
PHA Quax ◽  
A Y Nossent
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Swapna Vidhur Daulatabad ◽  
Rajneesh Srivastava ◽  
Sarath Chandra Janga

Abstract Background With advancements in omics technologies, the range of biological processes where long non-coding RNAs (lncRNAs) are involved, is expanding extensively, thereby generating the need to develop lncRNA annotation resources. Although, there are a plethora of resources for annotating genes, despite the extensive corpus of lncRNA literature, the available resources with lncRNA ontology annotations are rare. Results We present a lncRNA annotation extractor and repository (Lantern), developed using PubMed’s abstract retrieval engine and NCBO’s recommender annotation system. Lantern’s annotations were benchmarked against lncRNAdb’s manually curated free text. Benchmarking analysis suggested that Lantern has a recall of 0.62 against lncRNAdb for 182 lncRNAs and precision of 0.8. Additionally, we also annotated lncRNAs with multiple omics annotations, including predicted cis-regulatory TFs, interactions with RBPs, tissue-specific expression profiles, protein co-expression networks, coding potential, sub-cellular localization, and SNPs for ~ 11,000 lncRNAs in the human genome, providing a one-stop dynamic visualization platform. Conclusions Lantern integrates a novel, accurate semi-automatic ontology annotation engine derived annotations combined with a variety of multi-omics annotations for lncRNAs, to provide a central web resource for dissecting the functional dynamics of long non-coding RNAs and to facilitate future hypothesis-driven experiments. The annotation pipeline and a web resource with current annotations for human lncRNAs are freely available on sysbio.lab.iupui.edu/lantern.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 360
Author(s):  
Georgi Yu. Laptev ◽  
Elena A. Yildirim ◽  
Larisa A. Ilina ◽  
Valentina A. Filippova ◽  
Ivan I. Kochish ◽  
...  

One of the main roles in poultry resistance to infections caused by Salmonella is attributed to host immunity and intestinal microbiota. We conducted an experiment that involved challenging Lohmann White laying hens with Salmonella Enteritidis (SE), feeding them a diet supplemented with an EOs-based phytobiotic Intebio®. At 1 and 7 days post-inoculation, the expression profiles of eight genes related to immunity, transport of nutrients in the intestine, and metabolism were examined. Cecal microbiome composition and blood biochemical/immunological indices were also explored and egg production traits recorded. As a result, the SE challenge of laying hens and Intebio® administration had either a suppressive or activating effect on the expression level of the studied genes (e.g., IL6 and BPIFB3), the latter echoing mammalian/human tissue-specific expression. There were also effects of the pathogen challenge and phytobiotic intake on the cecal microbiome profiles and blood biochemical/immunological parameters, including those reflecting the activity of the birds’ immune systems (e.g., serum bactericidal activity, β-lysine content, and immunoglobulin levels). Significant differences between control and experimental subgroups in egg performance traits (i.e., egg weight/number/mass) were also found. The phytobiotic administration suggested a positive effect on the welfare and productivity of poultry.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1250
Author(s):  
Guangchun Han ◽  
Ansam Sinjab ◽  
Kieko Hara ◽  
Warapen Treekitkarnmongkol ◽  
Patrick Brennan ◽  
...  

The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Severely symptomatic COVID-19 is associated with lung inflammation, pneumonia, and respiratory failure, thereby raising concerns of elevated risk of COVID-19-associated mortality among lung cancer patients. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV-2 entry into lung cells. The single-cell expression landscape of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung cancer patients remains unknown. We sought to delineate single-cell expression profiles of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung adenocarcinoma (LUAD) patients. We examined the expression levels and cellular distribution of ACE2 and SARS-CoV-2-priming proteases TMPRSS2 and TMPRSS4 in 5 LUADs and 14 matched normal tissues by single-cell RNA-sequencing (scRNA-seq) analysis. scRNA-seq of 186,916 cells revealed epithelial-specific expression of ACE2, TMPRSS2, and TMPRSS4. Analysis of 70,030 LUAD- and normal-derived epithelial cells showed that ACE2 levels were highest in normal alveolar type 2 (AT2) cells and that TMPRSS2 was expressed in 65% of normal AT2 cells. Conversely, the expression of TMPRSS4 was highest and most frequently detected (75%) in lung cells with malignant features. ACE2-positive cells co-expressed genes implicated in lung pathobiology, including COPD-associated HHIP, and the scavengers CD36 and DMBT1. Notably, the viral scavenger DMBT1 was significantly positively correlated with ACE2 expression in AT2 cells. We describe normal and tumor lung epithelial populations that express SARS-CoV-2 receptor and proteases, as well as major host defense genes, thus comprising potential treatment targets for COVID-19 particularly among lung cancer patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuntao Shi ◽  
Yingying Zhuang ◽  
Jialing Zhang ◽  
Mengxue Chen ◽  
Shangnong Wu

Objective. Although noncoding RNAs, especially the microRNAs, have been found to play key roles in CRC development in intestinal tissue, the specific mechanism of these microRNAs has not been fully understood. Methods. GEO and TCGA database were used to explore the microRNA expression profiles of normal mucosa, adenoma, and carcinoma. And the differential expression genes were selected. Computationally, we built the SVM model and multivariable Cox regression model to evaluate the performance of tumorigenic microRNAs in discriminating the adenomas from normal tissues and risk prediction. Results. In this study, we identified 20 miRNA biomarkers dysregulated in the colon adenomas. The functional enrichment analysis showed that MAPK activity and MAPK cascade were highly enriched by these tumorigenic microRNAs. We also investigated the target genes of the tumorigenic microRNAs. Eleven genes, including PIGF, TPI1, KLF4, RARS, PCBP2, EIF5A, HK2, RAVER2, HMGN1, MAPK6, and NDUFA2, were identified to be frequently targeted by the tumorigenic microRNAs. The high AUC value and distinct overall survival rates between the two risk groups suggested that these tumorigenic microRNAs had the potential of diagnostic and prognostic value in CRC. Conclusions. The present study revealed possible mechanisms and pathways that may contribute to tumorigenesis of CRC, which could not only be used as CRC early detection biomarkers, but also be useful for tumorigenesis mechanism studies.


2015 ◽  
Vol 166 (6) ◽  
pp. 706-720.e11 ◽  
Author(s):  
Brittney P. Ciszek ◽  
Asma A. Khan ◽  
Hong Dang ◽  
Gary D. Slade ◽  
Shad Smith ◽  
...  

2015 ◽  
Vol 47 (4) ◽  
pp. 1249-1256 ◽  
Author(s):  
KAZUYA YATA ◽  
LEVENT BEKIR BEDER ◽  
SHUNJI TAMAGAWA ◽  
MUNEKI HOTOMI ◽  
YOSHIHIKO HIROHASHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document