scholarly journals Elevational and Latitudinal Changes in Cold Tolerance of Nymph and Adult Mormon Crickets Anabrus simplex (Orthoptera: Tettigoniidae)

2021 ◽  
Author(s):  
Robert B Srygley

Abstract Insects that hatch in winter and early spring in desert and montane regions are likely to encounter extreme weather events, including precipitous drops in temperature. The susceptibility of insects to exposure to subzero temperatures is predicted to decrease with increasing latitude or elevation. Mormon crickets occur over a broad latitudinal range from southwestern United States to Canada and a broad elevational range from near sea-level to 3,000 m. Population declines have been attributed to late freezing events, but winter hatching suggests they may also be cold tolerant. Lower lethal temperature of high elevation populations in low latitude Arizona (AZ) and high latitude Wyoming (WY) was measured by exposing nymphs and adults to 6 h or 24 h of subzero temperature. From similar latitude, WY was compared with mid-elevation Idaho (ID) and low elevation Oregon (OR) populations. Contrary to the prediction, lethal temperature of third instar nymphs was lower in AZ than in the more northerly populations. Consistently, AZ was more tolerant of cold in early nymphal instars relative to populations from higher latitude. Early hatching at lower latitudes might increase the risk of early instars experiencing a severe cold snap relative to nymphs at high latitudes. Also, contrary to prediction, the lethal temperature of adults increased with elevation, whereas third instar nymphs from mid-elevation ID were the most susceptible to cold exposure. Cold tolerance in immature and mature stages is more likely to be uncoupled when life stages do not coincide, as with Mormon crickets.


Nematology ◽  
2011 ◽  
Vol 13 (8) ◽  
pp. 977-983 ◽  
Author(s):  
Ingrid H. Williams ◽  
Marika Mänd ◽  
Angela Ploomi ◽  
Luule Metspalu ◽  
Eha Vilponis ◽  
...  

AbstractThe potato rot nematode, Ditylenchus destructor, may experience extreme environmental stress caused by freezing temperatures when overwintering in the field. A series of laboratory experiments were conducted in order to clarify overwintering strategies of the nematode. The current study aimed to examine the cold tolerance of this species in various aqueous environments as well as in plant tissues in order to determine its ability to survive 24 h exposure to subzero temperatures. Cold tolerance of adults and fourth-stage juveniles was significantly lower than that of younger juveniles. The lower lethal temperature of adults was –15°C. Although external ice formation affects all life stages, a few second-stage juveniles were able to survive temperatures as low as –30°C. The results expand the current understanding of freezing survival in the potato rot nematode and will lead to better comprehension of its ability to withstand subzero temperature conditions.



2016 ◽  
Vol 12 (5) ◽  
pp. 20160123 ◽  
Author(s):  
Heath A. MacMillan ◽  
Mads F. Schou ◽  
Torsten N. Kristensen ◽  
Johannes Overgaard

There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K + in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling.



HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 187e-187
Author(s):  
Carolyn DeMoranville ◽  
Irving DeMoranville ◽  
Tom Bicki

Cold tolerance of cranberry (Vaccinium macrocarpon Ait.) flower buds (spring) and fruit had previously been investigated for the cultivars Early Black (EB) and Howes (H), leading to predictors of cold tolerance based on appearance of the buds (size and growth) and fruit (color). We studied these cultivars along with `Ben Lear' (BL) (buds only) and `Stevens' (S) using controlled temperatures to determine the accuracy of predicting cold damage. BL was the least cold-tolerant cultivar in early spring, both BL and S were less tolerant than EB and H during budbreak (-2.8C vs. -3.9C) and elongation (-2.8C vs. -1.4C), and all survived any exposure to -1.4C. EB fruit were tolerant of -5C once maximum color was achieved and 2 weeks later would tolerate short exposures to -6.5C or less. H fruit developed deep tolerance (below 6.5C) by November in only 1 year out of 2. S fruit were least tolerant: -5C for short periods at M maturity. The phenological model used to predict cold tolerance of flower buds was 48% accurate in our trials, generally overestimating bud tolerance, particularly for BL and S. EB fruit showed more tolerance than predicted, H less.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jie Gao ◽  
Tongxin Dou ◽  
Weidi He ◽  
Ou Sheng ◽  
Fangcheng Bi ◽  
...  

Abstract Background Banana is a tropical fruit with a high economic impact worldwide. Cold stress greatly affects the development and production of banana. Results In the present study, we investigated the functions of MaMAPK3 and MaICE1 involved in cold tolerance of banana. The effect of RNAi of MaMAPK3 on Dajiao (Musa spp. ‘Dajiao’; ABB Group) cold tolerance was evaluated. The leaves of the MaMAPK3 RNAi transgenic plants showed wilting and severe necrotic symptoms, while the wide-type (WT) plants remained normal after cold exposure. RNAi of MaMAPK3 significantly changed the expressions of the cold-responsive genes, and the oxidoreductase activity was significantly changed in WT plants, while no changes in transgenic plants were observed. MaICE1 interacted with MaMAPK3, and the expression level of MaICE1 was significantly decreased in MaMAPK3 RNAi transgenic plants. Over-expression of MaICE1 in Cavendish banana (Musa spp. AAA group) indicated that the cold resistance of transgenic plants was superior to that of the WT plants. The POD P7 gene was significantly up-regulated in MaICE1-overexpressing transgenic plants compared with WT plants, and the POD P7 was proved to interact with MaICE1. Conclusions Taken together, our work provided new and solid evidence that MaMAPK3-MaICE1-MaPOD P7 pathway positively improved the cold tolerance in monocotyledon banana, shedding light on molecular breeding for the cold-tolerant banana or other agricultural species.



Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1031
Author(s):  
Clara Bertel ◽  
Jürgen Hacker ◽  
Gilbert Neuner

In the temperate zone of Europe, plants flowering in early spring or at high elevation risk that their reproductive organs are harmed by episodic frosts. Focusing on flowers of two mountain and three early-flowering colline to montane distributed species, vulnerability to ice formation and ice management strategies using infrared video thermography were investigated. Three species had ice susceptible flowers and structural ice barriers, between the vegetative and reproductive organs, that prevent ice entrance from the frozen stems. Structural ice barriers as found in Anemona nemorosa and Muscari sp. have not yet been described for herbaceous species that of Jasminum nudiflorum corroborates findings for woody species. Flowers of Galanthus nivalis and Scilla forbesii were ice tolerant. For all herbs, it became clear that the soil acts as a thermal insulator for frost susceptible below ground organs and as a thermal barrier against the spread of ice between individual flowers and leaves. Both ice barrier types presumably promote that the reproductive organs can remain supercooled, and can at least for a certain time-period escape from effects of ice formation. Both effects of ice barriers appear significant in the habitat of the tested species, where episodic freezing events potentially curtail the reproductive success.



2020 ◽  
Author(s):  
Changbing Huang ◽  
Chun Jiang ◽  
limin Jin ◽  
Huanchao Zhang

Abstract Background:Hemerocallis fulva is a perennial herb belonging to Hemerocallis of Hemerocallis. Because of the large and bright colors, it is often used as a garden ornamental plant. But most varieties of H. fulva on the market will wither in winter, which will affect their beauty. It is very important to study the effect of low temperature stress on the physiological indexes of H. fulva and understand the cold tolerance of different H. fulva. MiRNA is a kind of endogenous non coding small molecular RNA with length of 21-24nt. It mainly inhibits protein translation by cutting target genes, and plays an important role in the development of organisms, gene expression and biological stress. Low temperature is the main abiotic stress affecting the production of H. fulva in China, which hinders the growth and development of plants. A comprehensive understanding of the expression pattern of microRNA in H. fulva under low temperature stress can improve our understanding of microRNA mediated stress response. Although there are many studies on miRNAs of various plants under cold stress at home and abroad, there are few studies on miRNAs related to cold stress of H. fulva. It is of great significance to explore the cold stress resistant gene resources of H. fulva, especially the identification and functional research of miRNA closely related to cold stress, for the breeding of excellent H. fulva.Results A total of 5619 cold-responsive miRNAs, 315 putative novel and 5 304 conserved miRNAs, were identified from the leaves and roots of two different varieties ‘Jinyan’ (cold-tolerant) and ‘Lucretius ’ (cold-sensitive), which were stressed under -4 oC for 24 h. Twelve conserved and three novel miRNAs (novel-miR10, novel-miR19 and novel-miR48) were differentially expressed in leaves of ‘Jinyan’ under cold stress. Novel-miR19, novel-miR29 and novel-miR30 were up-regulated in roots of ‘Jinyan’ under cold stress. Thirteen and two conserved miRNAs were deferentially expressed in leaves and roots of ‘Lucretius’ after cold stress. The deferentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR156, miR166 and miR319 families. A total of 6 598 target genes for 6 516 known miRNAs and 82 novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Ten differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR(q-PCR), and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR156a-3-p, miR319a, and novel-miR19) may play important roles in plant response to cold stress.Conclusions Our study indicates that some putative target genes and miRNA mediated metabolic processes and stress responses are significant to cold tolerance in H. fulva.



2006 ◽  
Vol 63 (3) ◽  
pp. 255-261 ◽  
Author(s):  
Renata Pereira da Cruz ◽  
Sandra Cristina Kothe Milach ◽  
Luiz Carlos Federizzi

Cold tolerance of rice (Oryza sativa L.) during the reproductive stage is important to guarantee high yield under low temperature environments. Field selection, however, does not allow identification of adequate tolerance sources and limits selection of segregating lines due to variable temperature. The objective of this study was to devise methods for distinguishing rice genotypes as to their cold tolerance at the reproductive stage when evaluated under controlled temperature. The effect of cold temperatures was investigated in six rice genotypes at 17°C for varying length of time (three, five, seven and ten days) at two reproductive stages (microsporogenesis and anthesis). Cold tolerance was measured as the percentage of reduction in panicle exsertion and in spikelet fertility. Evaluating cold tolerance through the reduction in panicle exsertion did not allow for the distinction between cold tolerant from cold sensitive genotypes and, when the reduction in spikelet fertility was considered, a minimum of seven days was required to differentiate the genotypes for cold tolerance. Genotypes were more sensitive to cold at anthesis than at microsporogenesis and, as these stages were highly correlated, cold screening could be performed at anthesis only, since it is easier to determine. Rice cold tolerance at the reproductive stage may be characterized by the reduction in spikelet fertility due to cold temperature (17°C) applied for seven days at anthesis.



2007 ◽  
Vol 55 (3) ◽  
pp. 273-282
Author(s):  
S. Sharma ◽  
H. Chaudhary

Seventy-eight doubled haploid (DH) lines, derived from 21 elite and diverse winter × spring wheat F 1 hybrids, following the wheat × maize system, were screened along with the parental genotypes under in vitro and in vivo conditions for cold tolerance. Under in vitro conditions, the 2,3,5-triphenyl tetrazolium chloride (TTC) test was used to characterize the genotypes for cold tolerance. Based on the TTC test, only one doubled haploid, DH 69, was characterized as cold-tolerant, seven DH and five winter wheat parents were moderately tolerant, while the rest were susceptible. Analysis of variance under in vivo conditions also indicated the presence of sufficient genetic variability among the genotypes (DH lines + parents) for all the yield-contributing traits under study. The correlation and path analysis studies underlined the importance of indirect selection for tillers per plant, harvest index and grains per spike in order to improve grain yield. It was also concluded that selection should not be practised for grain weight per spike as it would adversely affect the grain yield per plant. When comparing the field performance of the genotypes with the in vitro screening parameters, it was concluded that in addition to the TTC test, comprising a single parameter, other physiological and biochemical in vitro parameters should be identified, which clearly distinguish between cold-tolerant and susceptible genotypes and also correlate well with their performance under field conditions.



2017 ◽  
Vol 108 (4) ◽  
pp. 487-493 ◽  
Author(s):  
J. Rozsypal ◽  
M. Moos ◽  
S.G. Goto

AbstractThe bean bug (Riptortus pedestris) is a pest of soybeans and other legumes in Japan and other Asian countries. It enters a facultative adult diapause on exposure to short days. While photoperiodism and diapause are well understood in R. pedestris, knowledge of cold tolerance is very limited, as is information on the effect of diapause on cold tolerance. We examined the effect of photoperiod, cold acclimation, and feeding status on cold tolerance in R. pedestris. We found that cold acclimation significantly increased survival at −10°C in both long- and short-day adult R. pedestris. Since the difference in cold survival between long- and short-day cold-acclimated groups was only marginal, we conclude that entering diapause is not crucial for R. pedestris to successfully pass through cold acclimation and become cold tolerant. We observed similar effects in 5th instar nymphs, with both long- and short-day cold-acclimated groups surviving longer cold exposures compared with non-acclimated groups. Starvation, which was tested only in adult bugs, had only a negligible and negative impact on cold survival. Although cold tolerance significantly increased with cold acclimation in adult bugs, supercooling capacity unexpectedly decreased. Our results suggest that changes in supercooling capacity as well as in water content are unrelated to cold tolerance in R. pedestris. An analysis of metabolites revealed differences between the treatments, and while several metabolites markedly increased with cold acclimation, their concentrations were too low to have a significant effect on cold tolerance.



1991 ◽  
Vol 69 (12) ◽  
pp. 3028-3037 ◽  
Author(s):  
Olga Kukal ◽  
Matthew P. Ayres ◽  
J. Mark Scriber

A steep decline in the diversity of swallowtail butterfly species at high latitudes could be due to limited cold tolerance of overwintering pupae. If this is so, species with unusually northerly distributions should be unusually cold tolerant. We compared the northerly distributed Papilio canadensis with its southern relative, P. glaucus. Pupae were exposed for 2–5 months to four acclimatization treatments: outdoors in Alaska, outdoors in Michigan, constant 5 °C, and constant −25 °C. Field temperatures encountered by pupae in Alaska were lower than in Michigan. The supercooling point of P. glaucus pupae was unaffected by acclimatization (mean ± SE= −23.5 ± 0.52 °C). The supercooling point of P. canadensis pupae did not differ from that of P. glaucus pupae, except following acclimatization in Alaska, when it dropped to −27.0 ± 0.55 °C. Survival of pupae in Michigan was high for all populations (70–90%); in Alaska, survival of P. canadensis was just as high, but survival of P. glaucus dropped to 14%. Freezing was usually fatal in both species, but death was not immediate. No pupae survived 6 weeks at −25 °C. Trehalose was the most conspicuous metabolite revealed by nuclear magnetic resonance spectroscopy of live pupae and hemolymph. Labelled glucose was metabolized differently by the two species, which may underly the difference in acclimation potential and cold tolerance. The results support the hypothesis that winter temperatures limit swallowtail distributions.



Sign in / Sign up

Export Citation Format

Share Document