P2590A liver-derived secretory protein, selenoprotein P causes pressure overload-induced cardiac hypertrophys

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Usui ◽  
S Takashima ◽  
O Inoue ◽  
C Goten ◽  
Y Takeda ◽  
...  

Abstract Background Hepatokine selenoprotein P (SeP) contributes to insulin resistance and hyperglycemia in patients with type 2 diabetes. Inhibition of SeP protects the heart from ischemia reperfusion injury and serum levels of SeP are elevated in patients with heart failure with reduced ejection fraction. Objective We investigated the role of SeP in the regulation of cardiac remodeling in response to pressure overload. Methods and results To examine the role of SeP in cardiac remodeling, transverse aortic constriction (TAC) was subjected to SeP knockout (KO) and wild-type (WT) mice for 2 weeks. Hepatic expression of SeP in WT was significantly increased by TAC. LV weight/tibial length (TL) was significantly smaller in SeP KO mice than in WT mice (6.75±0.24 vs 8.33±0.32, p<0.01). Lung weight/TL was significantly smaller in SeP KO than in WT mice (10.46±0.44 vs 16.38±1.12, p<0.05). TAC-induced cardiac upregulation of the fetal type genes, including atrial and brain natriuretic factors, was significantly attenuated in SeP KO compared to WT. Furthermore, azan staining revealed that there was significantly less interstitial fibrosis in hearts after TAC in SeP KO than in WT mice. To determine whether hepatic overexpression of SeP affects TAC-induced cardiac hypertrophy, a hydrodynamic injection method was used to generate mice that overexpress SeP mRNA in the liver. Hepatic overexpression of SeP in SeP KO mice lead to a significant increase in LV weight/TL and Lung weight/TL after TAC compared to that in other SeP KO mice. Conclusions These results suggest that cardiac pressure overload induced hepatic expression of SeP and the absence of endogenous SeP attenuated cardiac hypertrophy, dysfunction and fibrosis in response to pressure overload in mice. SeP possibly plays a maladaptive role against progression of heart failure through the liver-heart axis.

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Soichiro Usui ◽  
Shin-ichiro Takashima ◽  
Kenji Sakata ◽  
Masa-aki Kawashiri ◽  
Masayuki Takamura

Background: Hepatokine selenoprotein P (SeP) contributes to insulin resistance and hyperglycemia in patients with type 2 diabetes. Although clinical studies suggest the insulin resistance is an independent risk factor of heart failure and inhibition of SeP protects the heart from ischemia reperfusion injury, the role of SeP in pathogenesis of chronic heart failure is not well understood. Objective: We examined the role of SeP in the regulation of cardiac remodeling in response to pressure overload. Methods and Results: We measured serum SeP levels in 22 patients for heart failure with reduced ejection fraction (HFrEF; LVEF<50%) and 22 normal subjects. Serum levels of SeP were significantly elevated in patients with HFrEF compared to in normal subjects (3.55 ± 0.43 vs 2.98 ± 0.43, p<0.01). To examine the role of SeP in cardiac remodeling, SeP knockout (KO) and wild-type (WT) mice were subjected to pressure overload (transverse aortic constriction (TAC)) for 2 weeks. The mortality rate following TAC was significantly decreased in SeP KO mice compared to WT mice (22.5 % in KO mice (n=40) vs 52.3 % in WT mice (n=39) p<0.01). LV weight/tibial length (TL) was significantly smaller in SeP KO mice than in WT mice (6.75 ± 0.24 vs 8.33 ± 0.32, p<0.01). Lung weight/TL was significantly smaller in SeP KO than in WT mice (10.46 ± 0.44 vs 16.38 ± 1.12, p<0.05). Interestingly, hepatic expression of SeP in WT was significantly increased by TAC. To determine whether hepatic overexpression of SeP affects TAC-induced cardiac hypertrophy, a hydrodynamic injection method was used to generate mice that overexpress SeP mRNA in the liver. Hepatic overexpression of SeP in SeP KO mice lead to a significant increase in LV weight/TL and Lung weight/TL after TAC compared to that in other SeP KO mice. Conclusions: These results suggest that serum levels of SeP were elevated in patients with heart failure with reduced ejection fraction and cardiac pressure overload induced hepatic expression of SeP in mice model. Gene deletion of SeP attenuated cardiac hypertrophy and dysfunction in response to pressure overload in mice. SeP possibly plays a pivotal role in promoting cardiac remodeling through the liver-heart axis.


2017 ◽  
Vol 313 (2) ◽  
pp. H304-H319 ◽  
Author(s):  
Xuejun Wang ◽  
Taixing Cui

Autophagy is an evolutionarily conserved process used by the cell to degrade cytoplasmic contents for quality control, survival for temporal energy crisis, and catabolism and recycling. Rapidly increasing evidence has revealed an important pathogenic role of altered activity of the autophagosome-lysosome pathway (ALP) in cardiac hypertrophy and heart failure. Although an early study suggested that cardiac autophagy is increased and that this increase is maladaptive to the heart subject to pressure overload, more recent reports have overwhelmingly supported that myocardial ALP insufficiency results from chronic pressure overload and contributes to maladaptive cardiac remodeling and heart failure. This review examines multiple lines of preclinical evidence derived from recent studies regarding the role of autophagic dysfunction in pressure-overloaded hearts, attempts to reconcile the discrepancies, and proposes that resuming or improving ALP flux through coordinated enhancement of both the formation and the removal of autophagosomes would benefit the treatment of cardiac hypertrophy and heart failure resulting from chronic pressure overload.


Author(s):  
Lisa E Dorn ◽  
William R Lawrence ◽  
Jennifer Petrosino ◽  
Xianyao Xu ◽  
Thomas J Hund ◽  
...  

Rationale: Cardiac hypertrophy, a major risk factor for heart failure, occurs when cardiomyocytes remodel in response to complex signaling induced by injury or cell stress. Although cardiomyocytes are the ultimate effectors of cardiac hypertrophy, non-myocyte populations play a large yet understudied role in determining how cardiomyocytes respond to stress. Objective: To identify novel paracrine regulators of cardiomyocyte hypertrophic remodeling. Methods and Results: : We have identified a novel role for a non-myocyte-derived and TGFbeta1-induced extracellular matrix protein Microfibrillar-associated protein 4 (MFAP4) in the pathophysiology of cardiac remodeling. We have determined that non-myocyte cells are the primary sources of MFAP4 in the heart in response to TGFbeta1 stimulation. Furthermore, we have demonstrated a crucial role of MFAP4 in the cardiac adaptation to stress. Global knockout of MFAP4 led to increased cardiac hypertrophy and worsened cardiac function following chronic pressure overload. Also, one week of angiotensin-mediated neurohumoral stimulation was sufficient to exacerbate cardiomyocyte hypertrophy in MFAP4 null mice. In contrast, administration of exogenous MFAP4 to isolated cardiomyocytes blunted their phenylephrine-induced hypertrophic growth through an integrin-dependent mechanism. Finally, MFAP4 deficiency leads to dysregulated integration of G protein-coupled receptor and integrin signaling in the heart. Conclusions: Altogether, our results demonstrate a critical paracrine role of MFAP4 in the development of cardiac hypertrophy and could inform future treatment options for heart failure patients.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 931
Author(s):  
Anureet K. Shah ◽  
Sukhwinder K. Bhullar ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Davy Vanhoutte ◽  
Jop Van Berlo ◽  
Allen J York ◽  
Yi Zheng ◽  
Jeffery D Molkentin

Background. Small GTPase RhoA has been previously implicated as an important signaling effector within the cardiomyocyte. However, recent studies have challenged the hypothesized role of RhoA as an effector of cardiac hypertrophy. Therefore, this study examined the in vivo role of RhoA in the development of pathological cardiac hypertrophy. Methods and results . Endogenous RhoA protein expression and activity levels (GTP-bound) in wild-type hearts were significantly increased after pressure overload induced by transverse aortic constriction (TAC). To investigate the necessity of RhoA within the adult heart, RhoA-LoxP-targeted (RhoA flx/flx ) mice were crossed with transgenic mice expressing Cre recombinase under the control of the endogenous cardiomyocyte-specific β-myosin heavy chain (β-MHC) promoter to generate RhoA βMHC-cre mice. Deletion of RhoA with β-MHC-Cre produced viable adults with > 85% loss of RhoA protein in the heart, without altering the basic architecture and function of the heart compared to control hearts, at both 2 and 8 months of age. However, subjecting RhoA βMHC-cre hearts to 2 weeks of TAC resulted in marked increase in cardiac hypertrophy (HW/BW (mg/g): 9.5 ± 0.3 for RhoA βMHC-cre versus 7.7 ± 0.4 for RhoA flx/flx ; and cardiomyocyte size (mm 2 ): 407 ± 21 for RhoA βMHC-cre versus 262 ± 8 for RhoA flx/flx ; n ≥ 8 per group; p<0.01) and a significantly increased fibrotic response. Moreover, RhoA βMHC-cre hearts transitioned more quickly into heart failure whereas control mice maintained proper cardiac function (fractional shortening (%): 23.3 ± 1.2 for RhoA βMHC-cre versus 29.3 ± 1.2 for RhoA flx/flx ; n ≥ 8 per group; p<0.01; 12 weeks after TAC). The latter was further associated with a significant increase in lung weight normalized to body weight and re-expression of the cardiac fetal gene program. In addition, these mice also displayed greater cardiac hypertrophy in response to 2 weeks of angiotensinII/phenylephrine infusion. Conclusion. These data identify RhoA as an antihypertrophic molecular switch in the mouse heart.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jorge E Massare ◽  
R. Haris Naseem ◽  
Jeff M Berry ◽  
Farhana Rob ◽  
Joseph A Hill

Background: Sudden cardiac death due to ventricular tachyarrhythmia (VT) accounts for a large number of deaths in patients with heart failure. Several cellular events which occur during pathological remodeling of the failing ventricle are implicated in the genesis of VT, including action potential prolongation, dysregulation of intercellular coupling, and fibrosis. Interestingly, transgenic mice over-expressing constitutively active PKD (caPKD) develop severe heart failure without interstitial fibrosis, an otherwise prominent feature of the disease. The goal here was to define the role of interstitial fibrosis in the proarrhythmic phenotype of failing myocardium. Methods and Results: We performed echocardiographic, electrocardiographic, and in vivo electrophysiologic studies in 8 –10 week old caPKD mice (n=12). Similar studies were performed in mice with load-induced heart failure induced by surgical pressure overload (sTAB, n=10), a model of heart failure with prominent interstitial fibrosis. caPKD and sTAB mice showed similar degrees of ventricular dilation (LV systolic dimension caPKD 2.4±0.8 mm vs 3.0±0.9 sTAB, p=0.18) and severe systolic dysfunction (% fractional shortening caPKD 25±11 vs 28±11 sTAB, p=0.62). Yet, caPKD mice showed minimal interstitial fibrosis, comparable to unoperated controls. With the exception of ventricular refractory period, which was higher in caPKD (48±11 msec vs 36±7 TAB and 40±8 WT, p<0.05), other electrocardiographic and electrophysiologic variables were similar among the 3 groups (p=NS), including heart rate, QT duration, and mean VT threshold. As expected, VT (≥3beats) was readily inducible by programmed stimulation in sTAB mice (7/10). By contrast, VT was less inducible in caPKD mice (4/12; p=0.1 vs TAB and <0.05 vs WT), and uninducible in unoperated controls (0/12). VT was polymorphic in both models, but episodes of VT were both slower (VT cycle length caPKD 58±4.0 msec vs 48±1 sTAB, p=0.016) and longer in caPKD mice (caPKD 1.8±0.7 sec vs 0.47±0.3 sTAB, p=0.038). Conclusion: Interstitial fibrosis contributes to the inducibility, maintenance, and rate of VT in heart failure. These findings highlight the importance of anti-remodeling therapies known to target fibrosis in heart disease.


2008 ◽  
Vol 295 (4) ◽  
pp. H1385-H1393 ◽  
Author(s):  
Nadia Hedhli ◽  
Paulo Lizano ◽  
Chull Hong ◽  
Luke F. Fritzky ◽  
Sunil K. Dhar ◽  
...  

We tested the possibility that proteasome inhibition may reverse preexisting cardiac hypertrophy and improve remodeling upon pressure overload. Mice were submitted to aortic banding and followed up for 3 wk. The proteasome inhibitor epoxomicin (0.5 mg/kg) or the vehicle was injected daily, starting 2 wk after banding. At the end of the third week, vehicle-treated banded animals showed significant ( P < 0.05) increase in proteasome activity (PA), left ventricle-to-tibial length ratio (LV/TL), myocyte cross-sectional area (MCA), and myocyte apoptosis compared with sham-operated animals and developed signs of heart failure, including increased lung weight-to-TL ratio and decreased ejection fraction. When compared with that group, banded mice treated with epoxomicin showed no increase in PA, a lower LV/TL and MCA, reduced apoptosis, stabilized ejection fraction, and no signs of heart failure. Because overload-mediated cardiac remodeling largely depends on the activation of the proteasome-regulated transcription factor NF-κB, we tested whether epoxomicin would prevent this activation. NF-κB activity increased significantly upon overload, which was suppressed by epoxomicin. The expression of NF-κB-dependent transcripts, encoding collagen types I and III and the matrix metalloprotease-2, increased ( P < 0.05) after banding, which was abolished by epoxomicin. The accumulation of collagen after overload, as measured by histology, was 75% lower ( P < 0.05) with epoxomicin compared with vehicle. Myocyte apoptosis increased by fourfold in hearts submitted to aortic banding compared with sham-operated hearts, which was reduced by half upon epoxomicin treatment. Therefore, we propose that proteasome inhibition after the onset of pressure overload rescues ventricular remodeling by stabilizing cardiac function, suppressing further progression of hypertrophy, repressing collagen accumulation, and reducing myocyte apoptosis.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Mengfei Cao ◽  
Wei Yuan ◽  
Meiling Peng ◽  
Ziqi Mao ◽  
Qianru Zhao ◽  
...  

Abstract Pathological cardiac hypertrophy is a complex process and eventually develops into heart failure, in which the heart responds to various intrinsic or external stress, involving increased interstitial fibrosis, cell death and cardiac dysfunction. Studies have shown that oxidative stress is an important mechanism for this maladaptation. Cyclophilin A (CyPA) is a member of the cyclophilin (CyPs) family. Many cells secrete CyPA to the outside of the cells in response to oxidative stress. CyPA from blood vessels and the heart itself participate in a variety of signaling pathways to regulate the production of reactive oxygen species (ROS) and mediate inflammation, promote cardiomyocyte hypertrophy and proliferation of cardiac fibroblasts, stimulate endothelial injury and vascular smooth muscle hyperplasia, and promote the dissolution of extracellular matrix (ECM) by activating matrix metalloproteinases (MMPs). The events triggered by CyPA cause a decline of diastolic and systolic function and finally lead to the occurrence of heart failure. This article aims to introduce the role and mechanism of CyPA in cardiac hypertrophy and remodeling, and highlights its potential role as a disease biomarker and therapeutic target.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Shungo Hikoso ◽  
Kinya Otsu ◽  
Osamu Yamaguchi ◽  
Toshihiro Takeda ◽  
Masayuki Taniike ◽  
...  

Objectives: We have previously reported that NF-κB contributes to GPCR agonist-induced hypertrophy in cultured cardiomyocytes. However, the in vivo role of this pathway in the pathogenesis of cardiac remodeling remains to be elucidated. Although IκB kinase β (IKKβ)/NF-κB pathway is a major negative regulator of cell death, it can sensitize cells to death-inducing stimuli in some instances, thus it can be either anti- or pro-apoptotic. In this study, we aimed to clarify the role of IKKβ/NF-κB signaling in cardiac remodeling using cardiac-specific IKKβ deficient mice. Methods and Results: We crossed mice bearing an IKK β flox allele with mice expressing the Cre recombinase under the control of the myosin light chain 2v promoter ( MLC2v-Cre +/− ) to generate IKK β flox/flox ; MLC2v-Cre +/− mice (conditional knockout:CKO). Then, CKO mice (n=14) and control littermates bearing IKK β flox/flox (CTRL, n=14) were subjected to pressure overload by means of transverse aortic constriction (TAC). EMSA analysis revealed NF-κB DNA binding activity after TAC had attenuated in CKO hearts. One week after TAC, echocardiography showed significantly lower left ventricular fractional shortening (26.9±2.7% vs. 41.4±0.9%, p<0.01), and higher left ventricular end-diastolic dimension (4.02±0.14 mm vs. 3.47±0.08 mm, p<0.01) and lung weight/body weight ratio (11.1±1.4 vs. 5.5±0.1, p<0.01) in CKO mice compared with CTRL mice, indicating the development of heart failure in CKO mice. Number of apoptotic cells had increased in CKO hearts after TAC, suggesting that the enhanced apoptosis is a cause for heart failure. The expression levels of MnSOD mRNA and protein after TAC, which is one of NF-κB target genes, were significantly lower in CKO than those in CTRL mice. As a consequence, oxidative stress and JNK activation in CKO hearts after TAC had significantly increased compared with those in CTRL heart, suggesting that increased oxidative stress and enhanced JNK activity resulted in cardiomyocyte apoptosis in CKO hearts. Conclusion: These results show that IKKβ/NF-κB pathway in cardiomyocyte plays a protective role mediated through attenuation of oxidative stress and JNK activation in response to pressure overload.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Ning Zhou ◽  
Ben Ma ◽  
Tristen T Hays ◽  
Hongyu Qiu

Aims: Pressure overload induced cardiac hypertrophy is a key risk factor for heart failure. Although several defined interventions result in a significant inhibition of cardiac hypertrophy, the functional consequences are controversial. Identification of novel targets modulating the cardiac hypertrophy without adversely affecting cardiac function is particularly crucial to the treatment of heart failure. Here we test our hypothesis that the valosin-containing protein (VCP) is a novel mediator of cardiac protection against cardiac hypertrophy and heart failure by pressure overload. Methods and Results: Pressure overload was induced by transverse aortic constriction (TAC) in a mouse model to mimic the progression of cardiac hypertrophy and heart failure. Cardiac structure and function were measured by echocardiography and hemodynamic analysis. VCP expression was significantly reduced in wild type (WT) mice after 2 weeks TAC at both the mRNA and protein levels by 40% and 45 % respectively and even more markedly reduced after 5 weeks TAC (68% in mRNA and 73% in protein, all, P <0.01 vs sham). Cardiac overexpression of VCP in a transgenic (TG) mouse did not alter either cardiac structure or function at baseline condition. However, compared to 2 week TAC WT mice, VCP TG mice showed a significant repression of cardiac hypotrophy, evidenced by a significant reduction in the ratio of left ventricle (LV) /tibial length (TL) by 36%, LV posterior wall thickness by 20%, and cardiomyocyte cross sectional area by 39% (all P <0.05 vs WT). After 5 weeks of TAC, while WT mice progressed to cardiac failure, VCP TG mice exhibited preservation of cardiac function in terms of ejection function (EF,72±1% vs 52±4.1% in WT) and Lung weight /TL ratio (8.0±0.8mg/mm vs 9.8±0.8 mg/mm in WT) ( P <0.05 vs WT). Induction of fetal cardiac genes in TAC WT, e.g. ANP and BNP, was significant suppressed in VCP TG mice ( P <0.05 vs WT). TAC induced activation of mammalian target of rapamycin complex 1 (mTORC1), e.g., an increase of phosphorylation of mTOR and S6K1, was significantly blunted in VCP TG mice vs WT after TAC ( P <0.05 vs WT). Conclusion: Overexpression of VCP in vivo prevents the progression of cardiac hypertrophy and dysfunction upon pressure overload by modulating mTORC1 signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document