scholarly journals 91 Overlapping effects of MI-R-21 inhibition and oral anti-fibrotic and anti-inflammatory drugs: rationale for drug repurposing to relieve ischemia/reperfusion injury

2020 ◽  
Vol 22 (Supplement_N) ◽  
pp. N83-N79
Author(s):  
Alberto Aimo ◽  
Oriol Iborra Egea ◽  
Michele Emdin ◽  
Antoni Bayes-Genis

Abstract Aims Reperfusion strategies have reduced the mortality of ST-segment elevation myocardial infarction (STEMI), but ischemia/reperfusion (I/R) injury still represents an important issue, and the prevalence of heart failure (HF) after STEMI is raising. Intracoronary infusion of miR-21 inhibitors after reperfusion has been reported to reduce cardiac fibrosis and hypertrophy and improve cardiac function in pigs. Possible drawbacks of miR-21 inhibitors are their high costs and the need for intracoronary administration. Oral drugs with anti-fibrotic or anti-inflammatory actions could have similar effects on protein expression than miR-21 inhibition. We examined the 2 drugs approved for idiopathic pulmonary fibrosis (nintedanib and pirfenidone) and colchicine, which is being evaluated for the prevention of adverse ventricular remodelling after STEMI (NCT03156816). Methods and results We identified the regulatory profile of miR-21 (588 target genes). Only 99 of these interactions were supported by robust experimental data (i.e., information from reporter gene assays), and were then considered for further examination. The biological significance of these 99 targets was evaluated through over-representation analysis, and 13 genes were identified as potentially related to cardiovascular diseases. We retrieved all known targets and main downstream interactions of nintedanib, pirfenidone and colchicine (source: www.drugbank.ca). We cross-validated these datasets by using neural network analyses to search for protein-protein interactions, focusing on those shared by miR-21 inhibition and each one of the 3 drugs. Nintedanib and miR-21 inhibition shared many targets, which could indicate overlapping mechanisms of action. The proto-oncogene SRC, which participates in gene transcription, immune response, apoptosis and migration, emerged as the leading signaling effector. By blocking SRC expression and many downstream effectors of SRC, as well as platelet derived growth factor, nintedanib could decreased miR-21 expression. The molecular effects of nintedanib include an inhibition of inflammation, fibrosis and angiogenesis, and then ultimately a relief from I/R injury, in a similar fashion than anti-miR-21. Contrary to nintedanib, no overlap between the effects of pirfenidone and miR-21 inhibition was found. Conversely, colchicine seems to determine an indirect blockade of the important pro-inflammatory signaling pathway AKT/NFKB, similarly to miR-21 inhibition. Colchicine has also been proposed to inhibit SRC, but few published data are available. Conclusion miR-21 inhibition is emerging as a potential treatment for I/R cardiac injury, but its applicability in clinical practice is burdened by several limitations. Drug repurposing could aid this situation by mimicking the molecular activity of miR-21 inhibition. Through a bioinformatic approach, we found that nintedanib could exert beneficial effects similar to those reported for miR-21 inhibition, with a lower degree of overlap between the effects of colchicine and anti-miR-21. If confirmed by experimental evidence, nintedanib or colchicine could enter the stage of clinical trials to assess their efficacy as cardioprotective therapies in human patients with STEMI.

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A Aimo ◽  
O Iborra Egea ◽  
C Passino ◽  
M Emdin

Abstract Background Intracoronary infusion of a specific miR-21 inhibitor after reperfused MI has been reported to reduce cardiac fibrosis and hypertrophy and improve cardiac function in pigs. Possible drawbacks of anti-miR-21 therapy are the high costs of this therapy, and the need for intracoronary administration, preferably some days after reperfusion. Oral drugs with anti-fibrotic actions could have similar effects than anti-miR-21, while overcoming the limitations of anti-miR-21. We tested this hypothesis by examining the two oral drugs approved for idiopathic pulmonary fibrosis (nintedanib and pirfenidone). Methods We identified the regulatory profile of miR-21, which included 588 target genes. Only 99 of these interactions were supported by information from reporter gene assays. The biological significance of these 99 targets was evaluated through over-representation analysis, and 13 genes were identified as potentially related to cardiovascular diseases. We retrieved all known targets and main downstream interactions of nintedanib and pirfenidone from Drugbank. Finally, we cross-validated these datasets by using neural network analyses to search for protein-protein interactions, focusing on those shared by miR-21 inhibition, nintedanib and pirfenidone. Results Nintedanib and anti-miR21 had many targets in common, which could indicate an overlap in their corresponding mechanisms of action. The proto-oncogene SRC, which participates in gene transcription, immune response, apoptosis and migration, emerged as the leading signaling effector. By blocking SRC expression and many downstream effectors of SRC, as well as platelet-derived growth factor, nintedanib could decreased miR-21 expression. The molecular effects of nintedanib include inhibition of inflammation, fibrosis and angiogenesis, and then ultimately a relief from I/R injury, in a similar fashion than anti-miR-21. Contrary to nintedanib, no overlap between the effects of pirfenidone and anti-miR-21 was found. Conclusion Because of the remarkably strong overlapping with the targets of miR-21, there is a stronger rationale to assess nintedanib than pirfenidone as a cardioprotective therapy. If confirmed by experimental evidence, nintedanib could enter the stage of clinical trials to assess its efficacy in human patients with STEMI. Funding Acknowledgement Type of funding sources: None.


2020 ◽  
Vol 31 (4) ◽  
pp. 716-730 ◽  
Author(s):  
Marc Johnsen ◽  
Torsten Kubacki ◽  
Assa Yeroslaviz ◽  
Martin Richard Späth ◽  
Jannis Mörsdorf ◽  
...  

BackgroundAlthough AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance.MethodsTo identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury.ResultsThe gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI.ConclusionsThis comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).


2008 ◽  
Vol 294 (6) ◽  
pp. H2889-H2897 ◽  
Author(s):  
Qianwen Wang ◽  
Rajakumar V. Donthi ◽  
Jianxun Wang ◽  
Alex J. Lange ◽  
Lewis J. Watson ◽  
...  

During ischemia and heart failure, there is an increase in cardiac glycolysis. To understand if this is beneficial or detrimental to the heart, we chronically elevated glycolysis by cardiac-specific overexpression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) in transgenic mice. PFK-2 controls the level of fructose-2,6-bisphosphate (Fru-2,6-P2), an important regulator of phosphofructokinase and glycolysis. Transgenic mice had over a threefold elevation in levels of Fru-2,6-P2. Cardiac metabolites upstream of phosphofructokinase were significantly reduced, as would be expected by the activation of phosphofructokinase. In perfused hearts, the transgene caused a significant increase in glycolysis that was less sensitive to inhibition by palmitate. Conversely, oxidation of palmitate was reduced by close to 50%. The elevation in glycolysis made isolated cardiomyocytes highly resistant to contractile inhibition by hypoxia, but in vivo the transgene had no effect on ischemia-reperfusion injury. Transgenic hearts exhibited pathology: the heart weight-to-body weight ratio was increased 17%, cardiomyocyte length was greater, and cardiac fibrosis was increased. However, the transgene did not change insulin sensitivity. These results show that the elevation in glycolysis provides acute benefits against hypoxia, but the chronic increase in glycolysis or reduction in fatty acid oxidation interferes with normal cardiac metabolism, which may be detrimental to the heart.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Awadhesh K. Arya ◽  
Kurt Hu ◽  
Lalita Subedi ◽  
Tieluo Li ◽  
Bingren Hu

AbstractResuscitative endovascular balloon occlusion of the aorta (REBOA) is a lifesaving maneuver for the management of lethal torso hemorrhage. However, its prolonged use leads to distal organ ischemia–reperfusion injury (IRI) and systemic inflammatory response syndrome (SIRS). The objective of this study is to investigate the blood-based biomarkers of IRI and SIRS and the efficacy of direct intestinal cooling in the prevention of IRI and SIRS. A rat lethal hemorrhage model was produced by bleeding 50% of the total blood volume. A balloon catheter was inserted into the aorta for the implementation of REBOA. A novel TransRectal Intra-Colon (TRIC) device was placed in the descending colon and activated from 10 min after the bleeding to maintain the intra-colon temperature at 37 °C (TRIC37°C group) or 12 °C (TRIC12°C group) for 270 min. The upper body temperature was maintained at as close to 37 °C as possible in both groups. Blood samples were collected before hemorrhage and after REBOA. The organ injury biomarkers and inflammatory cytokines were evaluated by ELISA method. Blood based organ injury biomarkers (endotoxin, creatinine, AST, FABP1/L-FABP, cardiac troponin I, and FABP2/I-FABP) were all drastically increased in TRIC37°C group after REBOA. TRIC12°C significantly downregulated these increased organ injury biomarkers. Plasma levels of pro-inflammatory cytokines TNF-α, IL-1b, and IL-17F were also drastically increased in TRIC37°C group after REBOA. TRIC12°C significantly downregulated the pro-inflammatory cytokines. In contrast, TRIC12°C significantly upregulated the levels of anti-inflammatory cytokines IL-4 and IL-10 after REBOA. Amazingly, the mortality rate was 100% in TRIC37°C group whereas 0% in TRIC12°C group after REBOA. Directly cooling the intestine offered exceptional protection of the abdominal organs from IRI and SIRS, switched from a harmful pro-inflammatory to a reparative anti-inflammatory response, and mitigated mortality in the rat model of REBOA management of lethal hemorrhage.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Sashwati Roy ◽  
Savita Khanna ◽  
Chandan K Sen

Background . Transforming growth factor beta-1 (TGFbeta-1) is a key cytokine implicated in the development of cardiac fibrosis following ischemia-reperfusion (IR) injury. The profibrotic effects of TGFbeta-1 are primarily attributable to the differentiation of cardiac fibroblasts (CF) to myofibroblasts. Previously, we have reported perceived hyperoxia (Circ Res 92:264 –71), sub-lethal reoxygenation shock during IR, induces differentiation of CF to myofibroblasts at the infarct site. The mechanisms underlying oxygen-sensitive induction of TGFbeta-1 mRNA remain to be characterized. Hypothesis . Fra2 mediates oxygen-induced TGFbeta-1 mRNA expression in adult cardiac fibroblasts. Methods. TGFbeta-1 mRNA expression in infarct tissue was investigated in an IR injury model. The left anterior descending coronary artery of mice was transiently occluded for 60 minutes followed by reperfusion to induce IR injury. Spatially resolved infarct and non-infarct tissues were collected at 0, 1, 3, 5, and 7 days post-IR using laser capture microdissection. TGFbeta-1 mRNA levels were measured using real-time PCR. To investigate the role of oxygen in the regulation of TGFbeta-1, we used our previously reported model of perceived hyperoxia where CF (from 5wks old mice) after isolation were cultured at 5%O 2 (physiological pO 2 ) followed by transferring them to 20%O 2 to induce hyperoxic insult. Results & Conclusions. In vivo, a significant increase (p<0.01; n=5) in TGFbeta-1 mRNA was observed at the infarct site already at day 1 post-IR. The levels continued to increase until day 7 post-IR. In vitro, exposure of CF to 20%O 2 hyperoxic insult induced TGFbeta-1 mRNA (p<0.001; n=4) and protein (p<0.01; n=4) expression. Using a TGFbeta-1 promoter-luciferase reporter and DNA binding assays, we collected first evidence that AP-1 and its component Fra2 as major mediators of oxygen-induced TGFbeta-1 expression. Exposure to 20%O 2 resulted in increased localization of Fra2 in nucleus. siRNA-dependent Fra-2 knock-down completely abrogated oxygen-induced TGFbeta1 expression. In conclusion, this study presents first evidence that Fra-2 is involved in inducible TGFbeta1 expression in CF. Fra2 was noted as being central in regulating oxygen-induced TGFbeta-1 expression.s


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Harpreet Singh ◽  
Kajol Shah ◽  
Devsena Ponnalagu ◽  
Sanjay Chandrasekhar ◽  
Andrew R Kohut ◽  
...  

Expression and activation of the large conductance calcium and voltage-gated potassium (BK Ca ) channels encoded by Kcnma1 gene is shown to be vital in cardioprotection from ischemia-reperfusion injury. BK Ca channels present in SA node cells regulate the heart rate, and in blood vessels play an active role in vascular relaxation. However, the role of BK Ca in regulation of structure and function of the heart is not fully-established. Using Kcnma1 -/- mice, we have observed structural changes in cardiomyocytes and compromised cardiac function as compared to wild type mice. Absence of BK Ca resulted in significant increase in size of adult cardiomyocytes (from 7.95 + 0.1 um 2 to 9.68 + 0.1 um 2 , p < 0.01, n=480 cells each) and also increased cardiac fibrosis. Further to determine underlying signaling mechanisms in cardiac hypertrophy, we performed microarray analysis of RNAs isolated from wild type and Kcnma1 -/- mice (n=3) hearts. We found up regulation of a class of cardiac hypertrophy markers (myosin variants) and changes in the expression of several mitochondrial genes (such as ND4) directly associated with heart diseases in Kcnma1 -/- mice. To evaluate the functional consequence of absence of BK Ca , we performed high-resolution echocardiography on wild type and Kcnma1 -/- mice. Under anesthesia (1.5% isoflurane), left ventricle of Kcnma1 -/- mice showed significant reduction (p < 0.05) in ejection fraction (56 + 2 %, n=7) as compared to wild type (74 + 3 %, n=6) as well as fractional shortening (23 + 3 %, n=7, and 39 + 3 %, n=6, respectively). Similarly, right ventricle had a lower ejection fraction (35.7 + 4% vs 56.9 + 5 %, n > 5) in Kcnma1 -/- as compared to wild type mice. In agreement with our histopathology and microarray data, Kcnma1 -/- mice showed increased posterior wall thickness (0.75 + 0.3 mm vs 0.62 + 0.1 mm) and interventricular septum thickness (0.83 + 0.4 mm, n=7 vs 0.68 + 0.3 mm, n=6) . Together, these data imply that BK Ca plays a direct role in cardiac hypertrophy and cardiac function.


Sign in / Sign up

Export Citation Format

Share Document