scholarly journals Cardiac phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase increases glycolysis, hypertrophy, and myocyte resistance to hypoxia

2008 ◽  
Vol 294 (6) ◽  
pp. H2889-H2897 ◽  
Author(s):  
Qianwen Wang ◽  
Rajakumar V. Donthi ◽  
Jianxun Wang ◽  
Alex J. Lange ◽  
Lewis J. Watson ◽  
...  

During ischemia and heart failure, there is an increase in cardiac glycolysis. To understand if this is beneficial or detrimental to the heart, we chronically elevated glycolysis by cardiac-specific overexpression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) in transgenic mice. PFK-2 controls the level of fructose-2,6-bisphosphate (Fru-2,6-P2), an important regulator of phosphofructokinase and glycolysis. Transgenic mice had over a threefold elevation in levels of Fru-2,6-P2. Cardiac metabolites upstream of phosphofructokinase were significantly reduced, as would be expected by the activation of phosphofructokinase. In perfused hearts, the transgene caused a significant increase in glycolysis that was less sensitive to inhibition by palmitate. Conversely, oxidation of palmitate was reduced by close to 50%. The elevation in glycolysis made isolated cardiomyocytes highly resistant to contractile inhibition by hypoxia, but in vivo the transgene had no effect on ischemia-reperfusion injury. Transgenic hearts exhibited pathology: the heart weight-to-body weight ratio was increased 17%, cardiomyocyte length was greater, and cardiac fibrosis was increased. However, the transgene did not change insulin sensitivity. These results show that the elevation in glycolysis provides acute benefits against hypoxia, but the chronic increase in glycolysis or reduction in fatty acid oxidation interferes with normal cardiac metabolism, which may be detrimental to the heart.

2001 ◽  
Vol 280 (4) ◽  
pp. H1782-H1792 ◽  
Author(s):  
Xiaomin Zhang ◽  
Gohar Azhar ◽  
Jianyuan Chai ◽  
Pamela Sheridan ◽  
Koichiro Nagano ◽  
...  

Serum response factor (SRF), a member of the MCM1, agamous, deficiens, SRF (MADS) family of transcriptional activators, has been implicated in the transcriptional control of a number of cardiac muscle genes, including cardiac α-actin, skeletal α-actin, α-myosin heavy chain (α-MHC), and β-MHC. To better understand the in vivo role of SRF in regulating genes responsible for maintenance of cardiac function, we sought to test the hypothesis that increased cardiac-specific SRF expression might be associated with altered cardiac morphology and function. We generated transgenic mice with cardiac-specific overexpression of the human SRF gene. The transgenic mice developed cardiomyopathy and exhibited increased heart weight-to-body weight ratio, increased heart weight, and four-chamber dilation. Histological examination revealed cardiomyocyte hypertrophy, collagen deposition, and interstitial fibrosis. SRF overexpression altered the expression of SRF-regulated genes and resulted in cardiac muscle dysfunction. Our results demonstrate that sustained overexpression of SRF, in the absence of other stimuli, is sufficient to induce cardiac change and suggest that SRF is likely to be one of the downstream effectors of the signaling pathways involved in mediating cardiac hypertrophy.


2007 ◽  
Vol 293 (1) ◽  
pp. L162-L169 ◽  
Author(s):  
Kai Nowak ◽  
Sandra Weih ◽  
Roman Metzger ◽  
Ronald F. Albrecht ◽  
Stefan Post ◽  
...  

Limitation of reactive oxygen species-mediated ischemia-reperfusion (I/R) injury of the lung by vascular immunotargeting of antioxidative enzymes has the potential to become a promising modality for extension of the viability of banked transplantation tissue. The preferential expression of angiotensin-converting enzyme (ACE) in pulmonary capillaries makes it an ideal target for therapy directed toward the pulmonary endothelium. Conjugates of ACE monoclonal antibody (MAb) 9B9 with catalase (9B9-CAT) have been evaluated in vivo for limitation of lung I/R injury in rats. Ischemia of the right lung was induced for 60 min followed by 120 min of reperfusion. Sham-operated animals (sham, n = 6) were compared with ischemia-reperfused untreated animals (I/R, n = 6), I/R animals treated with biotinylated catalase (CAT, n = 6), and I/R rats treated with the conjugates (9B9-CAT, n = 6). The 9B9-CAT accumulation in the pulmonary endothelium of injured lungs was elucidated immunohistochemically. Arterial oxygenation during reperfusion was significantly higher in 9B9-CAT (221 ± 36 mmHg) and sham (215 ± 16 mmHg; P < 0.001 for both) compared with I/R (110 ± 10 mmHg) and CAT (114 ± 30 mmHg). Wet-dry weight ratio of I/R (6.78 ± 0.94%) and CAT (6.54 ± 0.87%) was significantly higher than of sham (4.85 ± 0.29%; P < 0.05), which did not differ from 9B9-CAT (5.58 ± 0.80%). The significantly lower degree of lung injury in 9B9-CAT-treated animals compared with I/R rats was also shown by decreased serum levels of endothelin-1 (sham, 18 ± 9 fmol/mg; I/R, 42 ± 12 fmol/mg; CAT, 36 ± 11 fmol/mg; 9B9-CAT, 26 ± 9 fmol/mg; P < 0.01) and mRNA for inducible nitric oxide synthase (iNOS) [iNOS-GAPDH ratio: sham, 0.15 ± 0.06 arbitrary units (a.u.); I/R, 0.33 ± 0.08 a.u.; CAT, 0.26 ± 0.05 a.u.; 9B9-CAT, 0.14 ± 0.04 a.u.; P < 0.001]. These results validate immunotargeting by anti-ACE conjugates as a prospective and specific strategy to augment antioxidative defenses of the pulmonary endothelium in vivo.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Anke J Tijsen ◽  
Ingeborg van der Made ◽  
Elza D van Deel ◽  
Monika Hiller ◽  
Yolan J Reckman ◽  
...  

MiRNAs play an important role in the control of diverse aspects of cardiac function. MiR-15b is highly expressed in the heart and is found consistently upregulated in hypertrophic and failing hearts. To investigate the function of miR-15b in the heart we set out two experiments. In the first experiment we generated two independent transgenic mouse lines that drive miR-15b expression under the αMHC-promotor and show a three and four fold overexpression of miR-15b. Strikingly, both lines show a decrease in heart weight/tibia length of 20% in adult and aged mice when compared to littermate controls. We investigated the response of these transgenic mice to thoracic aorta constriction (TAC) and found no differences in the hypertrophic response or in cardiac function measured by echocardiography between wild-type and transgenic mice. In a second experiment, we inhibited miR-15b using LNA-based antimiRs. In these mice, TAC resulted in an increased hypertrophic response and increased cardiac fibrosis when compared to a negative control antimiR. A wide range of predicted targets of miR-15 belong to the pathways of the TGFβ-superfamily and using a smad-dependent reporter we show that miR-15b inhibits TGFβ-induced Smad activity in HepG2 cells. One of the predicted targets in the TGFβ pathway is TGFβ receptor 1 (TGFβR1), of which the 3’UTR contains six predicted miR-15 binding sites. This suggests that the phenotype in the transgenic mice and after knockdown of miR-15b may be (partly) mediated by repression of TGFβR1. Indeed, in the adult miR-15b transgenic hearts we found a downregulation of TGFβR1 mRNA and protein and we confirmed binding of miR-15 to the TGFβR1 3’UTR by luciferase assays. In conclusion, miR-15b causes a cardiac hypotrophic phenotype at baseline in transgenic mice and inhibition of miR-15b leads to a stronger hypertrophic and fibrotic response after TAC. Furthermore miR-15b inhibits the TGFβ pathway by targeting the TGFβR1 and possibly other targets in this pathway. This research is funded by the Dutch Heart Foundation (NHF grant #2007B077).


2010 ◽  
Vol 30 (11) ◽  
pp. 1874-1882 ◽  
Author(s):  
Richard Changxun Li ◽  
Shang Zhi Guo ◽  
Seung Kwan Lee ◽  
David Gozal

Neuroglobin (Ngb) is a recently discovered globin that affords protection against hypoxic/ischemic-induced cell injury in brain. Hypoxic/ischemic injury is associated with accumulation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS). In previous studies, we found that Ngb has antioxidative properties, and protects PC-12 cells against hypoxia- and β-amyloid-induced cell death. To further delineate the potential role of Ngb in protection against cerebral ischemia–reperfusion injury in vivo, we developed a transgenic mouse line that overexpresses Ngb. Hippocampal ischemia–reperfusion injury was induced by a 10-minute bilateral occlusion of the common carotid arteries, and the animal brains were assessed 3 days later. CA1 neural injury was determined by cresyl violet staining. Lipid peroxidation was assessed using a malonyldialdehyde assay kit, whereas ROS/RNS accumulation was determined by Het staining in the CA1 hippocampal region. Hippocampal Ngb mRNA and protein expressions were assessed by reverse transcriptase-PCR and western blotting, respectively. Neuroglobin was successfully overexpressed in the hippocampus of Ngb transgenic mice. After ischemia–reperfusion, CA1 ROS/RNS production and lipid peroxidation were markedly decreased in Ngb transgenic mice compared with wild-type mice. Furthermore, CA1 neuronal injury was also markedly reduced. Thus, Ngb may confer protection against ischemia–reperfusion injury in the brain through its intrinsic antioxidant properties.


2001 ◽  
Vol 280 (3) ◽  
pp. H1039-H1050 ◽  
Author(s):  
Farah Sheikh ◽  
David P. Sontag ◽  
Robert R. Fandrich ◽  
Elissavet Kardami ◽  
Peter A. Cattini

We generated transgenic (TG) mice overexpressing fibroblast growth factor (FGF)-2 protein (22- to 34-fold) in the heart. Chronic FGF-2 overexpression revealed no significant effect on heart weight-to-body weight ratio or expression of cardiac differentiation markers. There was, however, a significant 20% increase in capillary density. Although there was no change in FGF receptor-1 expression, relative levels of phosphorylated c-Jun NH2-terminal kinase and p38 kinase as well as of membrane-associated protein kinase C (PKC)-α and total PKC-ε were increased in FGF-2-TG mouse hearts. An isolated mouse heart model of ischemia-reperfusion injury was used to assess the potential of increased endogenous FGF-2 for cardioprotection. A significant 34–45% increase in myocyte viability, reflected in a decrease in lactate dehydrogenase released into the perfusate, was observed in FGF-2 overexpressing mice and non-TG mice treated exogenously with FGF-2. In conclusion, FGF-2 overexpression causes augmentation of signal transduction pathways and increased resistance to ischemic injury. Thus, stimulation of endogenous FGF-2 expression offers a potential mechanism to enhance cardioprotection.


2017 ◽  
pp. 581-589 ◽  
Author(s):  
M. HLAVÁČOVÁ ◽  
V. OLEJNÍČKOVÁ ◽  
M. RONZHINA ◽  
T. STRAČINA ◽  
O. JANOUŠEK ◽  
...  

Hypertrophied hearts are known for increased risk of arrhythmias and are linked with reduced ischemic tolerance. However, still little is known about state characterized only by increased left ventricle (LV) mass fraction. Seventeen isolated rabbit hearts with various LV mass were divided into two groups according to LV weight/heart weight ratio (LVW/HW ratio), namely group H and L (with higher and lower LVW/HW ratio, respectively) and underwent three short cycles of global ischemia and reperfusion. The differences in electrogram (heart rate, QRSmax, mean number, onset and dominant form of ventricular premature beats) and in biochemical markers of myocardial injury (creatine kinase, lactate dehydrogenase – LDH) and lipid peroxidation (4-hydroxy-2-nonenal – 4-HNE) were studied. As compared to group L, hearts in group H exhibited lower tolerance to ischemia expressed as higher incidence and severity of arrhythmias in the first ischemic period as well as increase of LDH and 4-HNE after the first reperfusion. In the third cycle of ischemia-reperfusion, the preconditioning effect was observed in both electrophysiological parameters and LDH release in group H. Our results showed consistent trends when comparing changes in electrograms and biochemical markers. Moreover, 4-HNE seems to be good potential parameter of moderate membrane alteration following ischemia-reperfusion injury.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4112
Author(s):  
Ivan Koprivica ◽  
Dragica Gajić ◽  
Nada Pejnović ◽  
Verica Paunović ◽  
Tamara Saksida ◽  
...  

Ethyl pyruvate (EP), a stable form of pyruvate, has shown beneficial effects in animal models of shock, ischemia/reperfusion injury, and sepsis due to its potent anti-oxidant and anti-inflammatory properties. Our recent study demonstrated that EP application prevented the clinical manifestation of type 1 diabetes in mice by augmenting regulatory T cell (Treg) number and function. Our present study shows that EP increases Treg proliferation and suppressive function (perforin and IL-10 expression) during in vitro differentiation from conventional CD4+CD25− T cells. Enhanced expansion of Treg after EP treatment correlated with increased ATP levels and relied on increased glycolysis. Inhibition of oxidative phosphorylation did not attenuate EP stimulatory effects, suggesting that this metabolic pathway was not mandatory for EP-driven Treg proliferation. Moreover, EP lowered the expression of carnitine palmitoyltransferase I, an enzyme involved in fatty acid oxidation. Further, the stimulatory effect of EP on Treg proliferation was not mediated through inhibition of the mTOR signaling pathway. When given in vivo either intraperitoneally or orally to healthy C57BL/6 mice, EP increased the number of Treg within the peritoneal cavity or gut-associated lymphoid tissue, respectively. In conclusion, EP promotes in vitro Treg proliferation through increased glycolysis and enhances Treg proliferation when administered in vivo.


2020 ◽  
Vol 134 (17) ◽  
pp. 2279-2294
Author(s):  
Tao Qiu ◽  
Tianyu Wang ◽  
Jiangqiao Zhou ◽  
Zhongbao Chen ◽  
Jilin Zou ◽  
...  

Abstract Hepatic ischemia–reperfusion (I/R) injury is an important risk factor resulting in liver failure during liver surgery. However, there is still lack of effective therapeutic methods to treat hepatic I/R injury. DUSP12 is a member of the dual specific phosphatase (DUSP) family. Some DUSPs have been identified as being involved in the regulation of hepatic I/R injury. However, the role of DUSP12 during hepatic I/R injury is still unclear. In the present study, we observed a significant decrease in DUSP12 expression in a hepatic I/R injury mouse model in vivo and in hypoxia/reoxygenation (H/R) model in vitro. Using hepatocyte-specific DUSP12 knockout mice and DUSP12 transgenic mice, we demonstrated that DUSP12 apparently relieved I/R-induced liver injury. Moreover, DUSP12 inhibited hepatic inflammatory responses and alleviated apoptosis both in vitro and in vivo. Furthermore, we demonstrated that JNK and p38 activity, but not ERK1/2, was increased in the DUSP12-deficient mice and decreased in the DUSP12 transgenic mice under I/R condition. ASK1 was required for DUSP12 function in hepatic I/R injury and inhibition of ASK1 prevented inflammation and apoptosis in DUSP12-deficient hepatocytes and mice. In conclusion, DUSP12 protects against hepatic I/R injury and related inflammation and apoptosis. This regulatory role of DUSP12 is primarily through ASK1-JNK/p38 signaling pathway. Taken together, DUSP12 could be a potential therapeutic target for hepatic I/R injury.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Hui Liu ◽  
Chang Chun Ling ◽  
Wai Ho Oscar Yeung ◽  
Li Pang ◽  
Jiang Liu ◽  
...  

AbstractTumor recurrence is the major obstacle for pushing the envelope of liver transplantation for hepatocellular carcinoma (HCC) patients. The inflammatory cascades activated by acute liver graft injury promote tumor recurrence. We aimed to explore the role and mechanism of myeloid-derived suppressor cell (MDSC) mobilization induced by liver graft injury on tumor recurrence. By analyzing 331 HCC patients who received liver transplantation, the patients with graft weight ratio (GWR, the weight of liver graft divided by the estimated standard liver weight of recipient) <60% had higher tumor recurrence than GWR ≥60% ones. MDSCs and CXCL10/TLR4 levels were significantly increased in patients with GWR <60% or tumor recurrence. These findings were further validated in our rat orthotopic liver transplantation model. In CXCL10−/− and TLR4−/− mice of hepatic ischemia/reperfusion injury plus major hepatectomy (IRH) model, monocytic MDSCs, instead of granulocytic MDSCs, were significantly decreased. Importantly, CXCL10 deficiency reduced the accumulation of TLR4+ monocytic MDSCs, and CXCL10 increased MDSC mobilization in the presence of TLR4. Moreover, MMP14 was identified as the key molecule bridging CXCL10/TLR4 signaling and MDSC mobilization. Knockout or inhibition of CXCL10/TLR4 signaling significantly reduced the tumor growth with decreased monocytic MDSCs and MMP14 in the mouse tumor recurrent model. Our data indicated that monocytic MDSCs were mobilized and recruited to liver graft during acute phase injury, and to promote HCC recurrence after transplantation. Targeting MDSC mobilization via CXCL10/TLR4/MMP14 signaling may represent the therapeutic potential in decreasing post-transplant liver tumor recurrence.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ying Dong Du ◽  
Wen Yuan Guo ◽  
Cong Hui Han ◽  
Ying Wang ◽  
Xiao Song Chen ◽  
...  

AbstractDespite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia–reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.


Sign in / Sign up

Export Citation Format

Share Document