scholarly journals Host genotype explains rhizospheric microbial community composition: the case of wild cotton metapopulations (Gossypium hirsutum L.) in Mexico

2020 ◽  
Vol 96 (8) ◽  
Author(s):  
Alejandra Hernández-Terán ◽  
Marcelo Navarro-Díaz ◽  
Mariana Benítez ◽  
Rafael Lira ◽  
Ana Wegier ◽  
...  

ABSTRACT The rhizosphere provides several benefits to the plant host being a strong determinant for its health, growth and productivity. Nonetheless, the factors behind the assembly of the microbial communities associated with the rhizosphere such as the role of plant genotypes are not completely understood. In this study, we tested the role that intraspecific genetic variation has in rhizospheric microbial community assemblages, using genetically distinct wild cotton populations as a model of study. We followed a common garden experiment including five wild cotton populations, controlling for plant genotypes, environmental conditions and soil microbial community inoculum, to test for microbial differences associated with genetic variation of the plant hosts. Microbial communities of the treatments were characterized by culture-independent 16S rRNA gene amplicon sequencing with Illumina MiSeq platform. We analyzed microbial community diversity (alpha and beta), and diversity structure of such communities, determined by co-occurrence networks. Results show that different plant genotypes select for different and specific microbial communities from a common inoculum. Although we found common amplicon sequence variants (ASVs) to all plant populations (235), we also found unique ASVs for different populations that could be related to potential functional role of such ASVs in the rhizosphere.

2014 ◽  
Vol 81 (4) ◽  
pp. 1257-1266 ◽  
Author(s):  
Matthieu Barret ◽  
Martial Briand ◽  
Sophie Bonneau ◽  
Anne Préveaux ◽  
Sophie Valière ◽  
...  

ABSTRACTSeeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment ofgyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.


2020 ◽  
Author(s):  
Margaret A. Vogel ◽  
Olivia U. Mason ◽  
Thomas E. Miller

AbstractAlthough seagrasses are economically and ecologically critical species, little is known about their blade surface microbial communities and how these communities relate to the plant host. To determine microbial community composition and diversity on seagrass blade surfaces and in the surrounding seawater,16S rRNA gene sequencing (iTag) was used for samples collected at five sites along a gradient of freshwater input in the northern Gulf of Mexico on three separate sampling dates. Additionally, seagrass surveys were performed and environmental parameters were measured to characterize host characteristics and the abiotic conditions at each site. Results showed that Thalassia testudinum (turtle grass) blades hosted unique microbial communities that were distinct in composition and diversity from the water column. Additionally, results suggested that environmental conditions, including water depth, salinity, and temperature, were the major driver of community structure as blade surface microbial communities varied among sites and over sampling dates. Host condition may be a secondary driver of community structure as compositional changes were also correlated with host characteristics, including leaf growth rates and blade nutrient composition, Additionally, 21 microorganisms from five phyla (Cyanobacteria, Proteobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes) were present in all blade surface samples and may represent a core community for T. testudinum. Members of this core community may have ecological importance for determining community structure or in performing key community functions. This study provides new insights and understanding of the processes that influence the structure of marine phyllosphere communities, how these microbial communities relate to their host, and their role as a part of the seagrass holobiont, which is an important contribution given the current decline of seagrass coverage worldwide.


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Alexander Burkert ◽  
Thomas A. Douglas ◽  
Mark P. Waldrop ◽  
Rachel Mackelprang

ABSTRACTPermafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions, such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods, such as metagenomics and 16S rRNA gene sequencing. However, these methods do not distinguish among active, dead, and dormant cells. This is of particular concern in ancient permafrost, where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this, we applied (i) LIVE/DEAD differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19,000, 27,000, and 33,000 years old). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools, how they are influenced by soil physicochemical properties, and whether they change over geologic time. We found evidence that cells capable of forming endospores are not necessarily dormant and that members of the classBacilliwere more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of theClostridia, which were more likely to persist as vegetative cells in our older samples. We also found that removing exogenous “relic” DNA preserved within permafrost did not significantly alter microbial community composition. These results link the live, dead, and dormant microbial communities to physicochemical characteristics and provide insights into the survival of microbial communities in ancient permafrost.IMPORTANCEPermafrost soils store more than half of Earth’s soil carbon despite covering ∼15% of the land area (C. Tarnocai et al., Global Biogeochem Cycles 23:GB2023, 2009, https://doi.org/10.1029/2008GB003327). This permafrost carbon is rapidly degraded following a thaw (E. A. G. Schuur et al., Nature 520:171–179, 2015, https://doi.org/10.1038/nature14338). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling postthaw. Permafrost is also an analog for frozen extraterrestrial environments, and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive in permafrost, it may yield insights into how life (if it exists) survives in frozen environments outside of Earth. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 40-41
Author(s):  
Ketan Kulkarni ◽  
Katherine A Dunn ◽  
Jessica Connors ◽  
Joseph Bielawski ◽  
Jacob Nearing ◽  
...  

Background: L-asparaginase (ASNase) converts Asn to Asp and at sustained high levels depletes circulating Asn, leading to leukemic cell death. This dependency has led to the use of ASNase (in a peglyated form, PEGASNase) as an important therapy in the treatment of acute lymphoblastic leukemia (ALL) and has improved survival in patients with ALL. ASNase treatment efficacy relies on significant depletion of circulating Asn for sustained periods of time. Therapeutic monitoring is therefore critical to ensure sufficient levels of ASNase activity to maintain Asn depletion. Serum ASNase activity is monitored as a proxy for Asn levels, having an inverse relationship to Asn. The predictors of serum levels of ASNase activity are not clear however with variation in levels within the same patient between doses. The gut microbiome plays a role in human health and disease, producing metabolites that could impact ASNase therapy. To date, the role of the gut microbiome community in impacting serum ASNase activity levels has not been investigated. Methods: We investigated 12 paediatric ALL patients for which serum ASNase levels were measured (7 days post treatment) for two consecutive doses of PEGASNase and a stool sample was collected between these two doses (17 samples). Change in serum ASNase activity was determined by examining the difference in consecutive serum ASNase levels. Activity was considered to have decreased when change was negative (serum ASNase levels declined from previous measurement). Gut microbial community composition of the stool samples was determined from a portion of the 16S rRNA gene. In addition whole shotgun metagenome sequencing was used to investigate the relationship between microbial ASNase and ASNS genes and changes in serum ASNase levels during treatment. We utilized a Bayesian model to examine the microbial community structure in serum ASNase decreasing (SD) vs increasing (SI) samples. We used Mann-Whitney U test to examine differences in counts of bacterial ASNase and ASNS genes in SD and SI groups. Finally we investigated counts of bacterial ASNase and ASNS genes along with age, gender, disease risk, dose number, serum ASNase level at previous dose and time between stool sample and dose at predicting change in serum ASNase activity levels using regression models after applying lasso reduction. Results: Patients in this study were 50% male and had an average age of 5 years ranging from 1 month to 14.6 years. Among samples examined 35% had decreased serum activity compared to measurements from the previous dose. We identified differing assemblages of microbial taxa prior to PEGASNase treatment. The SD community was predominated by Escherichia prior to treatment while Bacteroides and Streptococcus predominated in the SI community (Fig 1). We found that counts of microbial ASNS were significantly (p=0.003) negatively correlated with change in serum ASNase activity levels (Fig 2), however neither bacterial ASNase gene (ansA or ansB) was significant. Including covariates and applying model reduction we find that ASNS (p=0.0005), dose number (p= 0.001), age at diagnosis (p= 0.001), serum ASNase levels at previous dose (p= 0.008), and counts of ansA (p=0.04) predict change in serum ASNase levels (adjusted R2=0.826, p= 0.0002). Only dose-number was positively correlated with change in serum ASNase level. Conclusions: We found differences in the microbial community prior to PEGASNase treatment possibly suggesting that modifying the microbiome (decreasing contribution of Escherichia) prior to treatment could result in increased serum ASNase activity. This data also suggests that increased amounts of bacterial ASNS genes present may be associated with a decrease in serum ASNase activity. Future work should focus on a larger and more diverse set of samples in order to further investigate SD and SI community-level properties and the role of covariates (e.g., age and dose number), and further exam the interplay between serum ASNase activity, and bacterial ASNS. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 80 (11) ◽  
pp. 3518-3530 ◽  
Author(s):  
Xueju Lin ◽  
Malak M. Tfaily ◽  
J. Megan Steinweg ◽  
Patrick Chanton ◽  
Kaitlin Esson ◽  
...  

ABSTRACTThis study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance ofAcidobacteriaand theSyntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance ofArchaea(primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by theMethanosarcinalesin the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub,Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland.


2018 ◽  
Vol 28 (2) ◽  
pp. 65-77 ◽  
Author(s):  
Jiyoung Lee ◽  
Jae-Hyun Lim ◽  
Junhyung Park ◽  
Il-Nam Kim

Microbial communities play an essential role in marine biogeochemical cycles. Physical and biogeochemical changes in Jinhae Bay, the most anthropogenically eutrophied bay on the coasts of South Korea, are well described, but less is known about the associated changes in microbial communities. Temporal and vertical variation in microbial communities at three depths (surface, middle, and bottom) at seven time points (June to December) at the J1 sampling site were investigated on the MiSeq platform based on the 16S rRNA gene. Overall, the microbial community was dominated by Proteobacteria, Cyanobacteria, and Bacteroidetes from June to November, whereas Firmicutes were dominant in December, especially in the middle and bottom layers. The results indicate that the microbial community composition strongly varied with temporal changes in the physicochemical water properties. Moreover, the community composition differed markedly between the surface and middle layers and the bottom layer in the summer, when the water column was strongly stratified and bottom water hypoxia developed. A redundancy analysis suggested a significant correlation between physicochemical variables (i.e., temperature, salinity, and oxygen concentration) and microbial community composition. This study indicates that temporal changes in water conditions and eutrophication-induced hypoxia effectively shape the structure of the microbial community.


2021 ◽  
Vol 232 (1) ◽  
Author(s):  
Yazeed Abdelmageed ◽  
Carrie Miller ◽  
Carrie Sanders ◽  
Timothy Egbo ◽  
Alexander Johs ◽  
...  

AbstractIn nature, the bioaccumulative potent neurotoxin methylmercury (MeHg) is produced from inorganic mercury (Hg) predominantly by anaerobic microorganisms. Hg-contaminated soils are a potential source of MeHg due to microbial activity. We examine streambank soils collected from the contaminated East Fork Poplar Creek (EFPC) in Tennessee, USA, where seasonal variations in MeHg levels have been observed throughout the year, suggesting active microbial Hg methylation. In this study, we characterized the microbial community in contaminated bank soil samples collected from two locations over a period of one year and compared the results to soil samples from an uncontaminated reference site with similar geochemistry (n = 12). Microbial community composition and diversity were assessed by 16S rRNA gene amplicon sequencing. Furthermore, to isolate potential methylators from soils, enrichment cultures were prepared using selective media. A set of three clade-specific primers targeting the gene hgcA were used to detect Hg methylators among the δ-Proteobacteria in EFPC bank soils across all seasons. Two families among the δ-Proteobacteria that have been previously associated with Hg methylation, Geobacteraceae and Syntrophobacteraceae, were found to be predominant with relative abundances of 0.13% and 4.0%, respectively. However, in soil enrichment cultures, Firmicutes were predominant among families associated with Hg methylation. Specifically, Clostridiaceae and Peptococcaceae and their genera Clostridium and Desulfosporosinus were among the ten most abundant genera with relative abundances of 2.6% and 1.7%, respectively. These results offer insights into the role of microbial communities on Hg transformation processes in contaminated bank soils in EFPC. Identifying the biogeochemical drivers of MeHg production is critical for future remediation efforts.


2016 ◽  
Author(s):  
Jessica M Morrison ◽  
Chelsea L Murphy ◽  
Kristina Baker ◽  
Richard Zamor ◽  
Steve J Nikolai ◽  
...  

Background. Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results. Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13-16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched included the uncultured groups VadinBC27 and WCHB1-69 within the Bacteroidetes, genus Spirochaeta and the uncultured group SHA-4 within Spirochaetes, Ruminococcaceae, Lachnospiraceae, Yongiibacter, Geosporobacter, and Acidaminobacter within the Firmicutes, and genera Kluyvera, Pantoea, Edwardsiella and Aeromonas, and Buttiauxella within the Gamma-Proteobaceteria order Enterobacteriales. Conclusions. Our results represent the first systematic survey of microbial communities mediating turnover of algal biomass under anaerobic conditions, and highlights the diversity of lineages putatively involved in the degradation process.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252086
Author(s):  
Kerry L. McNally ◽  
Charles J. Innis ◽  
Adam Kennedy ◽  
Jennifer L. Bowen

Microbial communities of animals play a role in health and disease, including immunocompromised conditions. In the northeastern United States, cold-stunning events often cause endangered Kemp’s ridley turtles (Lepidochelys kempii) to become stranded on beaches in autumn. These sea turtles are admitted to rehabilitation facilities when rescued alive and are presumed immunocompromised secondary to hypothermia. To better understand the role that microbes play in the health of cold-stunned sea turtles, we characterized the oral and cloacal microbiome from Kemp’s ridley turtles at multiple timepoints during rehabilitation, from admission to pre-release, by using Illumina sequencing to analyze the 16S rRNA gene. Microbial communities were distinct between body sites and among turtles that survived and those that died. We found that clinical parameters such as presence of pneumonia or values for various blood analytes did not correlate with oral or cloacal microbial community composition. We also investigated the effect of antibiotics on the microbiome during rehabilitation and prior to release and found that the type of antibiotic altered the microbial community composition, yet overall taxonomic diversity remained the same. The microbiome of cold-stunned Kemp’s ridley turtles gradually changed through the course of rehabilitation with environment, antibiotics, and disease status all playing a role in those changes and ultimately the release status of the turtles.


Sign in / Sign up

Export Citation Format

Share Document